Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Algorithms Code Examples

Area overloded

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Area overloded */ #include<iostream.h> #include<conio.h> #define phi 3.14 int area(int,int); float area(int); void main() { int a,b,c,cho; clrscr(); cout<<"\t What do you want to do?\n"; cout<<"1. area of rectangle"<<endl; cout<<"2. area of circle"<<endl; cout<<"Choice:"; cin>>cho; switch(cho) { case 1: cout<<"Enter lengt and breath (with white space):"; cin>>a>>b; cout<<"Area of RECTANGLE:"<<area(a,b); break; case 2: cout<<"Enter radius:"; cin>>c; cout<<"Area of CIRCLE:"<<area(c); break; } getch(); } int area(int x,int y) { return (x*y); } float area(int s) { return (phi*s*s); }
Standard Input Stream (cin) in C++
The cin object is used to accept input from the standard input device i.e. keyboard. It is defined in the iostream header file. C++ cin statement is the instance of the class istream and is used to read input from the standard input device which is usually a keyboard. The extraction operator(>>) is used along with the object cin for reading inputs. The extraction operator extracts the data from the object cin which is entered using the keyboard.
Syntax for Standard Input Stream (cin) in C++
cin >> var_name;
>>
is the extraction operator.
var_name
is usually a variable, but can also be an element of containers like arrays, vectors, lists, etc. The "c" in cin refers to "character" and "in" means "input". Hence cin means "character input". The cin object is used along with the extraction operator >> in order to receive a stream of characters. The >> operator can also be used more than once in the same statement to accept multiple inputs. The cin object can also be used with other member functions such as getline(), read(), etc. Some of the commonly used member functions are: • cin.get(char &ch): Reads an input character and stores it in ch. • cin.getline(char *buffer, int length): Reads a stream of characters into the string buffer, It stops when: it has read length-1 characters or when it finds an end-of-line character '\n' or the end of the file eof. • cin.read(char *buffer, int n): Reads n bytes (or until the end of the file) from the stream into the buffer. • cin.ignore(int n): Ignores the next n characters from the input stream. • cin.eof(): Returns a non-zero value if the end of file (eof) is reached. The prototype of cin as defined in the iostream header file is: extern istream cin; The cin object in C++ is an object of class istream. It is associated with the standard C input stream stdin. The cin object is ensured to be initialized during or before the first time an object of type ios_base::Init is constructed. After the cin object is constructed, cin.tie() returns &cout. This means that any formatted input operation on cin forces a call to cout.flush() if any characters are pending for output.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Standard Input Stream (cin) in C++ language */ // cin with Member Functions #include <iostream> using namespace std; int main() { char name[20], address[20]; cout << "Name: "; // use cin with getline() cin.getline(name, 20); cout << "Address: "; cin.getline(address, 20); cout << endl << "You entered " << endl; cout << "Name = " << name << endl; cout << "Address = " << address; return 0; }
Switch Case Statement in C++
Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case match is found, a block of statements associated with that particular case is executed. Each case in a block of a switch has a different name/number which is referred to as an identifier. The value provided by the user is compared with all the cases inside the switch block until the match is found. If a case match is NOT found, then the default statement is executed, and the control goes out of the switch block.
Syntax for Switch Case Statement in C++
switch( expression ) { case value-1: Block-1; Break; case value-2: Block-2; Break; case value-n: Block-n; Break; default: Block-1; Break; } Statement-x;
• The expression can be integer expression or a character expression. • Value-1, 2, n are case labels which are used to identify each case individually. Remember that case labels should not be same as it may create a problem while executing a program. Suppose we have two cases with the same label as '1'. Then while executing the program, the case that appears first will be executed even though you want the program to execute a second case. This creates problems in the program and does not provide the desired output. • Case labels always end with a colon ( : ). Each of these cases is associated with a block. • A block is nothing but multiple statements which are grouped for a particular case. • Whenever the switch is executed, the value of test-expression is compared with all the cases which we have defined inside the switch. Suppose the test expression contains value 4. This value is compared with all the cases until case whose label four is found in the program. As soon as a case is found the block of statements associated with that particular case is executed and control goes out of the switch. • The break keyword in each case indicates the end of a particular case. If we do not put the break in each case then even though the specific case is executed, the switch in C will continue to execute all the cases until the end is reached. This should not happen; hence we always have to put break keyword in each case. Break will terminate the case once it is executed and the control will fall out of the switch. • The default case is an optional one. Whenever the value of test-expression is not matched with any of the cases inside the switch, then the default will be executed. Otherwise, it is not necessary to write default in the switch. • Once the switch is executed the control will go to the statement-x, and the execution of a program will continue.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* the switch statement helps in testing the equality of a variable against a set of values */ #include <iostream> using namespace std; int main () { // local variable declaration: char grade = 'D'; switch(grade) { case 'A' : cout << "Excellent!" << endl; break; case 'B' : case 'C' : cout << "Well done" << endl; break; case 'D' : cout << "You passed" << endl; break; case 'F' : cout << "Better try again" << endl; break; default : cout << "Invalid grade" << endl; } cout << "Your grade is " << grade << endl; return 0; }
#define Directive in C++
In the C++ Programming Language, the #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. Macro definitions are not variables and cannot be changed by your program code like variables. You generally use this syntax when creating constants that represent numbers, strings or expressions. The syntax for creating a constant using #define in the C++ is: #define token value
Syntax for #define Directive in C++
#define macro-name replacement-text
• Using #define to create Macros Macros also follow the same structure as Symbolic Constants; however, Macros allow arguments to be included in the identifier:
#define SQUARE_AREA(l) ((l) * (l))
Unlike in functions, the argument here is enclosed in parenthesis in the identifier and does not have a type associated with it. Before compilation, the compiler will replace every instance of SQUARE_AREA(l) by ((l) * (l)), where l can be any expression. • Conditional Compilation There are several directives, which can be used to compile selective portions of your program's source code. This process is called conditional compilation. The conditional preprocessor construct is much like the 'if' selection structure. Consider the following preprocessor code:
#ifndef NULL #define NULL 0 #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* #define directive in C++ language */ #include <bits/stdc++.h> using namespace std; void func1(); void func2(); #pragma startup func1 #pragma exit func2 void func1() { cout << "Inside func1()\n"; } void func2() { cout << "Inside func2()\n"; } int main() { void func1(); void func2(); cout << "Inside main()\n"; return 0; }
clrscr() Function in C++
It is a predefined function in "conio.h" (console input output header file) used to clear the console screen. It is a predefined function, by using this function we can clear the data from console (Monitor). Using of clrscr() is always optional but it should be place after variable or function declaration only. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* clrscr() function is also a non-standard function defined in "conio.h" header. This function is used to clear the console screen. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.*/ #include<iostream.h> #include<conio.h> void main() { int a=10, b=20; int sum=0; clrscr(); // use clrscr() after variable declaration sum=a+b; cout<<"Sum: "<<sum; //clear the console screen clrscr(); getch(); }
getch() Function in C++
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C++
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* wait for any character input from keyboard by getch() function code example. The getch() function is very useful if you want to read a character input from the keyboard. */ // C code to illustrate working of // getch() to accept hidden inputs #include<iostream.h> #include<conio.h> void main() { int a=10, b=20; int sum=0; clrscr(); sum=a+b; cout<<"Sum: "<<sum; getch(); // use getch() befor end of main() }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Break Statement in C++
Break statement in C++ is a loop control statement defined using the break keyword. It is used to stop the current execution and proceed with the next one. When a compiler calls the break statement, it immediately stops the execution of the loop and transfers the control outside the loop and executes the other statements. In the case of a nested loop, break the statement stops the execution of the inner loop and proceeds with the outer loop. The statement itself says it breaks the loop. When the break statement is called in the program, it immediately terminates the loop and transfers the flow control to the statement mentioned outside the loop.
Syntax for Break Statement in C++
// jump-statement; break;
The break statement is used in the following scenario: • When a user is not sure about the number of iterations in the program. • When a user wants to stop the program based on some condition. The break statement terminates the loop where it is defined and execute the other. If the condition is mentioned in the program, based on the condition, it executes the loop. If the condition is true, it executes the conditional statement, and if the break statement is mentioned, it will immediately break the program. otherwise, the loop will iterate until the given condition fails. if the condition is false, it stops the program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* break statement with while loop code example */ // program to find the sum of positive numbers // if the user enters a negative numbers, break ends the loop // the negative number entered is not added to sum #include <iostream> using namespace std; int main() { int number; int sum = 0; while (true) { // take input from the user cout << "Enter a number: "; cin >> number; // break condition if (number < 0) { break; } // add all positive numbers sum += number; } // display the sum cout << "The sum is " << sum << endl; return 0; }
Standard Output Stream (cout) in C++
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout.
Syntax for cout in C++
cout << var_name; //or cout << "Some String";
The syntax of the cout object in C++: cout << var_name; Or cout << "Some String";
<<
is the insertion operator
var_name
is usually a variable, but can also be an array element or elements of containers like vectors, lists, maps, etc. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters. The << operator can be used more than once with a combination of variables, strings, and manipulators. cout is used for displaying data on the screen. The operator << called as insertion operator or put to operator. The Insertion operator can be overloaded. Insertion operator is similar to the printf() operation in C. cout is the object of ostream class. Data flow direction is from variable to output device. Multiple outputs can be displayed using cout.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* standard output stream (cout) in C++ language */ #include <iostream> using namespace std; int main() { string str = "Do not interrupt me"; char ch = 'm'; // use cout with write() cout.write(str,6); cout << endl; // use cout with put() cout.put(ch); return 0; }
Standard end line (endl) in C++
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
Syntax for end line (endl) in C++
cout<< statement to be executed <<endl;
Whenever the program is writing the output data to the stream, all the data will not be written to the terminal at once. Instead, it will be written to the buffer until enough data is collected in the buffer to output to the terminal. But if are using flush in our program, the entire output data will be flushed to the terminal directly without storing anything in the buffer. Whenever there is a need to insert the new line character to display the output in the next line while flushing the stream, we can make use of endl in C++. Whenever there is a need to insert the new line character to display the output in the next line, we can make use of endl in '\n' character but it does not do the job of flushing the stream. So if we want to insert a new line character along with flushing the stream, we make use of endl in C++. Whenever the program is writing the output data to the stream, all the data will not be written to the terminal at once. Instead, it will be written to the buffer until enough data is collected in the buffer to output to the terminal. • It is a manipulator. • It doesn't occupy any memory. • It is a keyword and would not specify any meaning when stored in a string. • We cannot write 'endl' in between double quotations. • It is only supported by C++. • It keeps flushing the queue in the output buffer throughout the process.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Standard end line (endl) in C++ language */ //The header file iostream is imported to enable us to use cout in the program #include <iostream> //a namespace called std is defined using namespace std; //main method is called int main( ) { //cout is used to output the statement cout<< "Welcome to "; //cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream cout<< "C#"<<endl; //cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream cout<< "Learning is fun"<<endl; }


Method that implements the basic primality test. If witness doesn't return 1, n is definitely composite. Do this by computing a^i (mod n) and looking for "non-trivial" square roots of 1
To find the frequency of character in string in C++, enter the string and enter the character to Find the Frequency of that character (or to "count the occurrence of character") in string