C++ Programming Code Examples
C++ > Beginners Lab Assignments Code Examples
Simple Program For Namespace In C++
/* Simple Program For Namespace In C++
A namespace (sometimes also called a name scope) is an abstract container or environment created to hold a logical grouping of unique identifiers or symbols (i.e., names). An identifier defined in a namespace is associated only with that namespace. The same identifier can be independently defined in multiple namespaces. That is, the meaning associated with an identifier defined in one namespace may or may not have the same meaning as the same identifier defined in another namespace. Languages that support namespaces specify the rules that determine to which namespace an identifier (not its definition) belongs.
The functionality of namespaces is especially useful in the case that there is a possibility that a global object or function uses the same identifier as another one, causing redefinition errors. */
#include <iostream>
using namespace std;
//Namespace namespace first
namespace namespacefirst {
int value = 5;
}
//Namespace namespace second
namespace namespacesecond {
double value = 3.1416;
}
int main() {
//Namespace namespace first Variable Usage
cout << "namespacefirst value : " << namespacefirst::value << endl;
//Namespace namespace second Variable Usage
cout << "namespacesecond value : " << namespacesecond::value << endl;
return 0;
}
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
The C++ comments are statements that are not executed by the compiler. The comments in C++ programming can be used to provide explanation of the code, variable, method or class. If we write comments on our code, it will be easier for us to understand the code in the future. Also, it will be easier for your fellow developers to understand the code. By the help of comments, you can hide the program code also. There are two types of comments in C++: • Single Line comment. • Multi Line comment
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression. If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message. If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.