Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Using reverse_copy, a copying version of the generic reverse algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Using reverse_copy, a copying version of the generic reverse algorithm */ #include <iostream> #include <algorithm> #include <cassert> using namespace std; int main() { int a[100], b[100]; int i; for (i = 0; i < 100; ++i) a[i] = i; reverse_copy(&a[0], &a[100], &b[0]); for (i = 0; i < 100; ++i) cout << " a: "<< a[i] << "b: " << b[i] << " \n"; return 0; } /* a: 0b: 99 a: 1b: 98 a: 2b: 97 a: 3b: 96 a: 4b: 95 a: 5b: 94 a: 6b: 93 a: 7b: 92 a: 8b: 91 a: 9b: 90 a: 10b: 89 a: 11b: 88 a: 12b: 87 a: 13b: 86 a: 14b: 85 a: 15b: 84 a: 16b: 83 a: 17b: 82 a: 18b: 81 a: 19b: 80 a: 20b: 79 a: 21b: 78 a: 22b: 77 a: 23b: 76 a: 24b: 75 a: 25b: 74 a: 26b: 73 a: 27b: 72 a: 28b: 71 a: 29b: 70 a: 30b: 69 a: 31b: 68 a: 32b: 67 a: 33b: 66 a: 34b: 65 a: 35b: 64 a: 36b: 63 a: 37b: 62 a: 38b: 61 a: 39b: 60 a: 40b: 59 a: 41b: 58 a: 42b: 57 a: 43b: 56 a: 44b: 55 a: 45b: 54 a: 46b: 53 a: 47b: 52 a: 48b: 51 a: 49b: 50 a: 50b: 49 a: 51b: 48 a: 52b: 47 a: 53b: 46 a: 54b: 45 a: 55b: 44 a: 56b: 43 a: 57b: 42 a: 58b: 41 a: 59b: 40 a: 60b: 39 a: 61b: 38 a: 62b: 37 a: 63b: 36 a: 64b: 35 a: 65b: 34 a: 66b: 33 a: 67b: 32 a: 68b: 31 a: 69b: 30 a: 70b: 29 a: 71b: 28 a: 72b: 27 a: 73b: 26 a: 74b: 25 a: 75b: 24 a: 76b: 23 a: 77b: 22 a: 78b: 21 a: 79b: 20 a: 80b: 19 a: 81b: 18 a: 82b: 17 a: 83b: 16 a: 84b: 15 a: 85b: 14 a: 86b: 13 a: 87b: 12 a: 88b: 11 a: 89b: 10 a: 90b: 9 a: 91b: 8 a: 92b: 7 a: 93b: 6 a: 94b: 5 a: 95b: 4 a: 96b: 3 a: 97b: 2 a: 98b: 1 a: 99b: 0 */
For Loop Statement in C++
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Syntax of For Loop Statement in C++
for (initialization; condition; update) { // body of-loop }
initialization
initializes variables and is executed only once.
condition
if true, the body of for loop is executed, if false, the for loop is terminated.
update
updates the value of initialized variables and again checks the condition. A new range-based for loop was introduced to work with collections such as arrays and vectors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* For Loop Statement in C++ Language */ // C++ program to find the sum of first n natural numbers // positive integers such as 1,2,3,...n are known as natural numbers #include <iostream> using namespace std; int main() { int num, sum; sum = 0; cout << "Enter a positive integer: "; cin >> num; for (int i = 1; i <= num; ++i) { sum += i; } cout << "Sum = " << sum << endl; return 0; }
Relational Operators in C++
A relational operator is used to check the relationship between two operands. C++ Relational Operators are used to relate or compare given operands. Relational operations are like checking if two operands are equal or not equal, greater or lesser, etc. Relational Operators are also called Comparison Operators. • == Is Equal To 4 == 9 gives us false • != Not Equal To 4 != 9 gives us true • > Greater Than 4 > 9 gives us false • < Less Than 4 < 9 gives us true • >= Greater Than or Equal To 4 >= 9 give us false • <= Less Than or Equal To 4 <= 9 gives us true
==
Equal To Operator (==) is used to compare both operands and returns 1 if both are equal or the same, and 0 represents the operands that are not equal. The equal to == operator returns true - if both the operands are equal or the same false - if the operands are unequal int x = 10; int y = 15; int z = 10; x == y // false x == z // true The relational operator == is not the same as the assignment operator =. The assignment operator = assigns a value to a variable, constant, array, or vector. It does not compare two operands.
!=
Not Equal To Operator (!=) is the opposite of the Equal To Operator and is represented as the (!=) operator. The Not Equal To Operator compares two operands and returns 1 if both operands are not the same; otherwise, it returns 0. The not equal to != operator returns true - if both operands are unequal false - if both operands are equal. int x = 10; int y = 15; int z = 10; x != y // true x != z // false
>
Greater than Operator (>) checks the value of the left operand is greater than the right operand, and if the statement is true, the operator is said to be the Greater Than Operator. The greater than > operator returns true - if the left operand is greater than the right false - if the left operand is less than the right int x = 10; int y = 15; x > y // false y > x // true
<
Less than Operator (<) is used to check whether the value of the left operand is less than the right operand, and if the statement is true, the operator is known as the Less than Operator. The less than operator < returns true - if the left operand is less than the right false - if the left operand is greater than right int x = 10; int y = 15; x < y // true y < x // false
>=
Greater than Equal To Operator (>=) checks whether the left operand's value is greater than or equal to the right operand. If the statement is true, the operator is said to be the Greater than Equal to Operator. The greater than or equal to >= operator returns true - if the left operand is either greater than or equal to the right false - if the left operand is less than the right int x = 10; int y = 15; int z = 10; x >= y // false y >= x // true z >= x // true
<=
Less than Equal To Operator (<=) checks whether the value of the left operand is less than or equal to the right operand, and if the statement is true, the operator is said to be the Less than Equal To Operator. The less than or equal to operator <= returns true - if the left operand is either less than or equal to the right false - if the left operand is greater than right int x = 10; int y = 15; x > y // false y > x // true
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Relational Operators are used for the comparison of the values of two operands. For example, checking if one operand is equal to the other operand or not, an operand is greater than the other operand or not, etc. Some of the relational operators are (==, >= , <= ). */ #include <iostream> using namespace std; main() { int a = 21; int b = 10; int c ; if( a == b ) { cout << "Line 1 - a is equal to b" << endl ; } else { cout << "Line 1 - a is not equal to b" << endl ; } if( a < b ) { cout << "Line 2 - a is less than b" << endl ; } else { cout << "Line 2 - a is not less than b" << endl ; } if( a > b ) { cout << "Line 3 - a is greater than b" << endl ; } else { cout << "Line 3 - a is not greater than b" << endl ; } /* Let's change the values of a and b */ a = 5; b = 20; if( a <= b ) { cout << "Line 4 - a is either less than \ or equal to b" << endl ; } if( b >= a ) { cout << "Line 5 - b is either greater than \ or equal to b" << endl ; } return 0; }
Return Statement in C++
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression. If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message. If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
Syntax for Return Statement in C++
return[expression];
For a function of return type void, a return statement is not strictly necessary. If the end of such a function is reached without encountering a return statement, control is passed to the caller as if a return statement without an expression were encountered. In other words, an implicit return takes place upon completion of the final statement, and control automatically returns to the calling function. If a return statement is used, it must not contain an expression. The following are examples of return statements:
return; /* Returns no value */ return result; /* Returns the value of result */ return 1; /* Returns the value 1 */ return (x * x); /* Returns the value of x * x */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* illustrate Methods returning a value using return statement in C++ code example */ #include <iostream> using namespace std; // non-void return type // function to calculate sum int SUM(int a, int b) { int s1 = a + b; // method using the return // statement to return a value return s1; } // Driver method int main() { int num1 = 10; int num2 = 10; int sum_of = SUM(num1, num2); cout << "The sum is " << sum_of; return 0; }
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code. A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name { // code declarations }
To call the namespace-enabled version of either function or variable, prepend (::) the namespace name as follows:
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files. So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name { // code declarations }
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 { // code declarations namespace namespace_name2 { // code declarations } }
• Namespace is a feature added in C++ and not present in C. • A namespace is a declarative region that provides a scope to the identifiers (names of the types, function, variables etc) inside it. • Multiple namespace blocks with the same name are allowed. All declarations within those blocks are declared in the named scope. • Namespace declarations appear only at global scope. • Namespace declarations can be nested within another namespace. • Namespace declarations don't have access specifiers. (Public or private) • No need to give semicolon after the closing brace of definition of namespace. • We can split the definition of namespace over several units.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* namespaces in C++ language */ // A C++ code to demonstrate that we can define // methods outside namespace. #include <iostream> using namespace std; // Creating a namespace namespace ns { void display(); class happy { public: void display(); }; } // Defining methods of namespace void ns::happy::display() { cout << "ns::happy::display()\n"; } void ns::display() { cout << "ns::display()\n"; } // Driver code int main() { ns::happy obj; ns::display(); obj.display(); return 0; }
What is an Array in C++ Language
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations. By using the array, we can access the elements easily. Only a few lines of code are required to access the elements of the array.
Properties of Array
The array contains the following properties. • Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes. • Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest memory location. • Elements of the array can be randomly accessed since we can calculate the address of each element of the array with the given base address and the size of the data element.
Advantage of C++ Array
• 1) Code Optimization: Less code to the access the data. • 2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily. • 3) Ease of sorting: To sort the elements of the array, we need a few lines of code only. • 4) Random Access: We can access any element randomly using the array.
Disadvantage of C++ Array
• 1) Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike a linked list, an array in C++ is not dynamic. • 2) Insertion and deletion of elements can be costly since the elements are needed to be managed in accordance with the new memory allocation.
Declaration of C++ Array
To declare an array in C++, a programmer specifies the type of the elements and the number of elements required by an array as follows
type arrayName [ arraySize ];
This is called a single-dimensional array. The arraySize must be an integer constant greater than zero and type can be any valid C++ data type. For example, to declare a 10-element array called balance of type double, use this statement
double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.
Initializing Arrays
You can initialize an array in C++ either one by one or using a single statement as follows
double balance[5] = {850, 3.0, 7.4, 7.0, 88};
The number of values between braces { } cannot be larger than the number of elements that we declare for the array between square brackets [ ]. If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write
double balance[] = {850, 3.0, 7.4, 7.0, 88};
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array.
double salary = balance[9];
The above statement will take the 10th element from the array and assign the value to salary variable.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* arrays in C++ Language */ #include <iostream> using namespace std; int main() { // initialize an array without specifying size double numbers[] = {7, 5, 6, 12, 35, 27}; double sum = 0; double count = 0; double average; cout << "The numbers are: "; // print array elements // use of range-based for loop for (const double &n : numbers) { cout << n << " "; // calculate the sum sum += n; // count the no. of array elements ++count; } // print the sum cout << "\nTheir Sum = " << sum << endl; // find the average average = sum / count; cout << "Their Average = " << average << endl; return 0; }
Arithmetic Operators in C++
Arithmetic Operator is used to performing mathematical operations such as addition, subtraction, multiplication, division, modulus, etc., on the given operands. For example: 6 + 3 = 9, 5 - 3 = 2, 3 * 4 = 12, etc. are the examples of arithmetic operators. Let's discuss the different types of Arithmetic Operators in the C programming.
+
Plus Operator is a simple Plus (+) Operator used to add two given operands. We can use Plus Operator with different data types such as integer, float, long, double, enumerated and string type data to add the given operand.
-
The minus operator is denoted by the minus (-) symbol. It is used to return the subtraction of the first number from the second number. The data type of the given number can be different types, such as int, float, double, long double, etc., in the programing language.
*
The multiplication operator is represented as an asterisk (*) symbol, and it is used to return the product of n1 and n2 numbers. The data type of the given number can be different types such as int, float, and double in the C programing language.
/
The division operator is an arithmetic operator that divides the first (n1) by the second (n2) number. Using division operator (/), we can divide the int, float, double and long data types variables.
%
The modulus operator is represented by the percentage sign (%), and it is used to return the remainder by dividing the first number by the second number.
++
Increment Operator is the type of Arithmetic operator, which is denoted by double plus (++) operator. It is used to increase the integer value by 1.
--
Decrement Operator is denoted by the double minus (--) symbol, which decreases the operand value by 1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Perhaps you have warm memories of doing arithmetic drills in grade school. You can give that same pleasure to your computer. C++ uses operators to do arithmetic. It provides operators for five basic arithmetic calculations: addition, subtraction, multiplication, division, and taking the modulus. Each of these operators uses two values (called operands) to calculate a final answer. Together, the operator and its operands constitute an expression. */ #include <iostream> using namespace std; int main() { int a, b; a = 7; b = 2; // printing the sum of a and b cout << "a + b = " << (a + b) << endl; // printing the difference of a and b cout << "a - b = " << (a - b) << endl; // printing the product of a and b cout << "a * b = " << (a * b) << endl; // printing the division of a by b cout << "a / b = " << (a / b) << endl; // printing the modulo of a by b cout << "a % b = " << (a % b) << endl; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
Algorithm Library reverse_copy() Function in C++
Copy range reversed. C++ Algorithm reverse_copy() function is used to copy the elements from the range[first, last) to another range beginning at result in such a way that the elements in the range are in reverse order. C++ STL provides a function that copies the elements from the given range but in reverse order. Below is a simple program to show the working of reverse_copy().
Syntax for Algorithm reverse_copy() Function in C++
#include <algorithm> template <class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy (BidirectionalIterator first, BidirectionalIterator last, OutputIterator result);
first, last
Bidirectional iterators to the initial and final positions of the sequence to be copied. The range used is [first,last), which contains all the elements between first and last, including the element pointed by first but not the element pointed by last.
result
Output iterator to the initial position of the range where the reversed range is stored. The function takes three parameters. The first two are the range of the elements which are to be copied and the third parameter is the starting point from where the elements are to be copied in reverse order. The pointed type shall support being assigned the value of an element in the range [first,last). The ranges shall not overlap. Function returns an output iterator pointing to the end of the copied range, which contains the same elements in reverse order.
Complexity
Linear in the distance between first and last: Performs an assignment for each element.
Data races
The objects in the range [first,last) are accessed. The objects in the range between result and the returned value are modified. Each object is accessed exactly once.
Exceptions
Throws if either an element assignment or an operation on an iterator throws. Note that invalid arguments cause undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* copy the elements from the range[first, last) to another range beginning at result in such a way that the elements in the range are in reverse order by Algorithm reverse_copy() function code example. */ /* C++ Program to reverse the order of elements using reverse_copy() algorithm */ #include <iostream> #include <algorithm> #include <vector> #include <iomanip> #include <iterator> using namespace std; void print(string a[], int N) { for(int i = 0; i < N; i++) { cout << (i + 1) << ". " << setw(5) << a[i] << " "; } cout << endl; } int main() { string s[] = {"George", "John", "Lucy", "Alice", "Bob", "Watson"}; string t[6]; cout << "Original order : "; print(s, 6); cout << "Reversing the order ... " << endl; // Doesn't modify original array s[] reverse_copy(s, s + 6, t); cout << "Original order : "; print(s, 6); cout << "Reversed order : "; print(t, 6); }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }


Function overriding is a feature that allows us to have a "same function" in child class which is already present in the parent class. A child class inherits the data members and member
We have to enter some set of numbers. Now to find occurrence of positive, negative, zero from the given set of numbers, just check all the numbers using for loop whether number
The pointer is a C++ programming data type whose value refers directly to (or "points to") another value stored elsewhere in computer memory using its address. Pointer examples