C++ Programming Code Examples
C++ > Code Snippets Code Examples
Catch char pointer type exception
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/* Catch char pointer type exception */
#include <iostream>
using namespace std;
void XHandler(void)
{
try {
throw "hello";
}
catch(char *) {
cout << "Caught char * inside XHandler." << endl;
throw;
}
}
int main(void)
{
cout << "Start: " << endl;
try {
XHandler();
}
catch(char *)
{
cout << "Caught char * inside main." << endl;
}
cout << "End";
}
Comments in C++
The C++ comments are statements that are not executed by the compiler. The comments in C++ programming can be used to provide explanation of the code, variable, method or class. If we write comments on our code, it will be easier for us to understand the code in the future. Also, it will be easier for your fellow developers to understand the code. By the help of comments, you can hide the program code also. There are two types of comments in C++:
• Single Line comment
• Multi Line comment
Syntax for Single Line Comment in C++
/* This is a comment */
Syntax for Multi Line Comment in C++
/* C++ comments can also
* span multiple lines
*/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* program to illustrate use comments in C++ language */
#include <ostream>
using namespace std;
int main()
{
int x = 11; // x is a variable
cout<<x<<"\n";
/* declare and
print variable in C++ */
int x = 35;
cout<<x<<"\n";
// This is a comment
cout << "Hello World!";
/* Multi-line Comments
in C++ */
}
Exceptions Try/Catch in C++
When executing C++ code, different errors can occur: coding errors made by the programmer, errors due to wrong input, or other unforeseeable things. When an error occurs, C++ will normally stop and generate an error message. The technical term for this is: C++ will throw an exception (throw an error).
An exception is a problem that arises during the execution of a program. A C++ exception is a response to an exceptional circumstance that arises while a program is running, such as an attempt to divide by zero. Exceptions provide a way to transfer control from one part of a program to another. C++ exception handling is built upon three keywords: try, catch, and throw. The try and catch keywords come in pairs:
Syntax for Try/Catch Statement in C++
try {
// Block of code to try
throw exception; // Throw an exception when a problem arise
}
catch () {
// Block of code to handle errors
}
try
The try statement allows you to define a block of code to be tested for errors while it is being executed. The code which can throw any exception is kept inside(or enclosed in) atry block. Then, when the code will lead to any error, that error/exception will get caught inside the catch block.
throw
The throw keyword throws an exception when a problem is detected, which lets us create a custom error. It is used to throw exceptions to exception handler i.e. it is used to communicate information about error. A throw expression accepts one parameter and that parameter is passed to handler. throw statement is used when we explicitly want an exception to occur, then we can use throw statement to throw or generate that exception.
catch
The catch statement allows you to define a block of code to be executed, if an error occurs in the try block. catch block is intended to catch the error and handle the exception condition. We can have multiple catch blocks to handle different types of exception and perform different actions when the exceptions occur. For example, we can display descriptive messages to explain why any particular excpetion occured.
If you do not know the throw type used in the try block, you can use the "three dots" syntax (...) inside the catch block, which will handle any type of exception:
try {
int age = 15;
if (age >= 18) {
cout << "Access granted - you are old enough.";
} else {
throw 505;
}
}
catch (...) {
cout << "Access denied - You must be at least 18 years old.\n";
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/* Simple code example to show exception handling in C++.
The output of program explains flow of execution of try/catch blocks. */
#include <iostream>
using namespace std;
int main()
{
int x = -1;
// Some code
cout << "Before try \n";
try {
cout << "Inside try \n";
if (x < 0)
{
throw x;
cout << "After throw (Never executed) \n";
}
}
catch (int x ) {
cout << "Exception Caught \n";
}
cout << "After catch (Will be executed) \n";
return 0;
}
Pointers in C++ Language
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type.
You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
Syntax for Pointers in C++
int *ip; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch // pointer to character
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* pointer is a variable in C++ that holds the address of another variable */
#include <iostream>
using namespace std;
int main () {
int var = 20; // actual variable declaration.
int *ip; // pointer variable
ip = &var; // store address of var in pointer variable
cout << "Value of var variable: ";
cout << var << endl;
// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;
// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;
return 0;
}
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main()
{
............
............
}
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
1) It cannot be used anywhere in the program
a) in particular, it cannot be called recursively
b) its address cannot be taken
2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace).
3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static.
4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;.
5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program).
6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed).
7) (since C++20) The main function cannot be a coroutine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* simple code example by main() function in C++ */
#include <iostream>
using namespace std;
int main() {
int day = 4;
switch (day) {
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;
}
return 0;
}
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc.
Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name {
// code declarations
}
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files.
So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name {
// code declarations
}
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 {
// code declarations
namespace namespace_name2 {
// code declarations
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* namespaces in C++ language */
// A C++ code to demonstrate that we can define
// methods outside namespace.
#include <iostream>
using namespace std;
// Creating a namespace
namespace ns
{
void display();
class happy
{
public:
void display();
};
}
// Defining methods of namespace
void ns::happy::display()
{
cout << "ns::happy::display()\n";
}
void ns::display()
{
cout << "ns::display()\n";
}
// Driver code
int main()
{
ns::happy obj;
ns::display();
obj.display();
return 0;
}
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* using #include directive in C language */
#include <stdio.h>
int main()
{
/*
* C standard library printf function
* defined in the stdio.h header file
*/
printf("I love you Clementine");
printf("I love you so much");
printf("HappyCodings");
return 0;
}
Standard Output Stream (cout) in C++
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout.
Syntax for cout in C++
cout << var_name;
//or
cout << "Some String";
<<
is the insertion operator
var_name
is usually a variable, but can also be an array element or elements of containers like vectors, lists, maps, etc.
The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output".
The cout object is used along with the insertion operator << in order to display a stream of characters.
The << operator can be used more than once with a combination of variables, strings, and manipulators.
cout is used for displaying data on the screen. The operator << called as insertion operator or put to operator. The Insertion operator can be overloaded. Insertion operator is similar to the printf() operation in C. cout is the object of ostream class. Data flow direction is from variable to output device. Multiple outputs can be displayed using cout.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* standard output stream (cout) in C++ language */
#include <iostream>
using namespace std;
int main() {
string str = "Do not interrupt me";
char ch = 'm';
// use cout with write()
cout.write(str,6);
cout << endl;
// use cout with put()
cout.put(ch);
return 0;
}
The 'C++ program' tries to count alphabetical letters from d to n, but a break makes it stop when it encounters k: In a for statement, the 'break' can stop the counting when particular
String is a "sequence of characters". char data type is used to represent one single character in C++. So if you want to use a String in your program then you can use an "array of chars".