Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Compute the mean float mean with accumulate function

/* Compute the mean float mean with accumulate function */ #include <algorithm> #include <cmath> #include <functional> #include <iostream> #include <list> #include <numeric> #include <vector> using namespace std; template <class T> void print(T& c){ for( typename T::iterator i = c.begin(); i != c.end(); i++ ){ std::cout << *i << endl; } } int main( ) { const float a[] = { 1, 1.3, 1.5, 0.9, 0.1, 0.2}; // create and initialize vector with above data vector<float> data( a,a + sizeof( a ) / sizeof( a[0] ) ); cout << "DATA VECTOR HAS " << data.size() << " ELEMENTS\n"; print( data ); // compute the mean float mean = accumulate( data.begin(), data.end(), 0.0f )/ data.size(); }

A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.

A C++ template is a powerful feature added to C++. It allows you to define the generic classes and generic functions and thus provides support for generic programming. Generic programming is a technique where generic types are used as parameters in algorithms so that they can work for a variety of data types. We can define a template for a function. For example, if we have an add() function, we can create versions of the add function for adding the int, float or double type values. Where Ttype: It is a placeholder name for a data type used by the function. It is used within the function definition. It is only a placeholder that the compiler will automatically replace this placeholder with the actual data type. class: A class keyword is used to specify a generic type in a template declaration.

Return size. Returns the number of elements in the vector. This is the number of actual objects held in the vector, which is not necessarily equal to its storage capacity. vector::size() is a library function of "vector" header, it is used to get the size of a vector, it returns the total number of elements in the vector. The dynamic array can be created by using a vector in C++. One or more elements can be inserted into or removed from the vector at the run time that increases or decreases the size of the vector. The size or length of the vector can be counted using any loop or the built-in function named size(). This function does not accept any parameter.

#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.

Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin. This function does not accept any parameter.

Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.

The sizeof() is an operator that evaluates the size of data type, constants, variable. It is a compile-time operator as it returns the size of any variable or a constant at the compilation time. The size, which is calculated by the sizeof() operator, is the amount of RAM occupied in the computer. The sizeof is a keyword, but it is a compile-time operator that determines the size, in bytes, of a variable or data type. The sizeof operator can be used to get the size of classes, structures, unions and any other user defined data type. The data_type can be the data type of the data, variables, constants, unions, structures, or any other user-defined data type.

Accumulate values in range. Returns the result of accumulating all the values in the range [first,last) to init. The default operation is to add the elements up, but a different operation can be specified as binary_op. std::accumulate() is a built-in function in C++'s Standard Template Library. The function takes in a beginning iterator, an ending iterator, initial value, and (by default) computes the sum of the given initial value and the elements in the given range. The function can also be used for left folding. This is done by passing in a binary operation function object that takes the current accumulation value and the value of the current element, and returns the new accumulation value.

Templates are powerful features of C++ which allows us to write generic programs. Similar to function templates, we can use class templates to create a single class to work with different data types. Class templates come in handy as they can make our code shorter and more manageable. A class template starts with the keyword template followed by template parameter(s) inside <> which is followed by the class declaration. T is the template argument which is a placeholder for the data type used, and class is a keyword. Inside the class body, a member variable var and a member function functionName() are both of type T.

In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.

Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector. This function does not accept any parameter.

Check whether eofbit is set. Returns true if the eofbit error state flag is set for the stream. This flag is set by all standard input operations when the End-of-File is reached in the sequence associated with the stream. Note that the value returned by this function depends on the last operation performed on the stream (and not on the next). Operations that attempt to read at the End-of-File fail, and thus both the eofbit and the failbit end up set. This function can be used to check whether the failure is due to reaching the End-of-File or to some other reason.

In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program. The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index.

Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.