C++ Programming Code Examples
C++ > Code Snippets Code Examples
A dynamic output array
/* A dynamic output array */
#include <strstream>
#include <iostream>
using namespace std;
int main()
{
char *p;
ostrstream outs; // dynamically allocate array
outs << "C++ array-based I/O ";
outs << -10 << hex << " ";
outs.setf(ios::showbase);
outs << 100 << ends;
p = outs.str(); // Freeze dynamic buffer and return
// pointer to it.
cout << p;
return 0;
}
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
The stringstream, ostringstream, and istringstream objects are used for input and output to a string. They behave in a manner similar to fstream, ofstream and ifstream objects. The function str() can be used in two ways. First, it can be used to get a copy of the string that is being manipulated by the current stream string. This is most useful with output strings. The first form (1) returns a string object with a copy of the current contents of the stream. The second form (2) sets s as the contents of the stream, discarding any previous contents. The object preserves its open mode: if this includes ios_base::ate, the writing position is moved to the end of the new sequence. Internally, the function calls the str member of its internal string buffer object.
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression. If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message. If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Set specific format flags. The function setf() sets the io stream format flags of the current stream to fmtfl. The optional mask argument specifies that only the flags that are in both fmtfl and mask should be set. The return value is the previous configuration of io stream format flags. Member type fmtflags is a bitmask type (see ios_base::fmtflags). Function returns the format flags selected in the stream before the call. The first form (1) sets the stream's format flags whose bits are set in fmtfl, leaving unchanged the rest, as if a call to flags(fmtfl|flags()).
A C++ program starts its execution from this method "main". Wherever this main method is, the main method will be executed first. '()' is used at the end as main is a method. Main
First Input the length of a side of the triangle. Then Input the 'length of another side' of the triangle, then input the angle between these sides of the triangle. The area of the Scalene