Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Demonstrate count and count_if.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Demonstrate count and count_if. */ #include <iostream> #include <vector> #include <algorithm> using namespace std; bool even(int x) { return !(x%2); } int main() { vector<int> vectorObject; int i; for(i = 0; i <20; i++) { if(i%2) vectorObject.push_back(1); else vectorObject.push_back(2); } cout << "Sequence: "; for(i = 0; i <vectorObject.size(); i++) cout << vectorObject[ i ] << " "; cout << endl; int n; n = count(vectorObject.begin(), vectorObject.end(), 1); cout << n << " elements are 1\n"; n = count_if(vectorObject.begin(), vectorObject.end(), even); cout << n << " elements are even.\n"; return 0; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Vector Library Operator Index [] in C++
Access element. Returns a reference to the element at position n in the vector container. A similar member function, vector::at, has the same behavior as this operator function, except that vector::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception. Portable programs should never call this function with an argument n that is out of range, since this causes undefined behavior.
Syntax for Vector Operator Index [] in C++
#include <vector> reference operator[] (size_type n); const_reference operator[] (size_type n) const;
n
Position of an element in the container. Notice that the first element has a position of 0 (not 1). Member type size_type is an unsigned integral type. Function returns the element at the specified position in the vector. If the vector object is const-qualified, the function returns a const_reference. Otherwise, it returns a reference. Member types reference and const_reference are the reference types to the elements of the container (see vector member types).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). The reference returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
If the container size is greater than n, the function never throws exceptions (no-throw guarantee). Otherwise, the behavior is undefined.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Returns a reference to the element at specified location pos. No bounds checking is performed. Unlike std::map::operator[], this operator never inserts a new element into the container. Accessing a nonexistent element through this operator is undefined behavior. */ /* Access element from a vector by vector::operator[] code example */ #include <iostream> #include <vector> int main () { std::vector<int> myvector (10); // 10 zero-initialized elements std::vector<int>::size_type sz = myvector.size(); // assign some values: for (unsigned i=0; i<sz; i++) myvector[i]=i; // reverse vector using operator[]: for (unsigned i=0; i<sz/2; i++) { int temp; temp = myvector[sz-1-i]; myvector[sz-1-i]=myvector[i]; myvector[i]=temp; } std::cout << "myvector contains:"; for (unsigned i=0; i<sz; i++) std::cout << ' ' << myvector[i]; std::cout << '\n'; return 0; }
Algorithm Library count() Function in C++
Count appearances of value in range. Returns the number of elements in the range [first,last) that compare equal to val. The function uses operator== to compare the individual elements to val. The C++ function std::algorithm::count() returns the number of occurrences of value in range. This function uses operator == for comparison.
Syntax for Algorithm count() Function in C++
#include <algorithm> template <class InputIterator, class T> typename iterator_traits<InputIterator>::difference_type count (InputIterator first, InputIterator last, const T& val);
first, last
Input iterators to the initial and final positions of the sequence of elements. The range used is [first,last), which contains all the elements between first and last, including the element pointed by first but not the element pointed by last.
val
Value to match. T shall be a type supporting comparisons with the elements pointed by InputIterator using operator== (with the elements as left-hand side operands, and val as right-hand side). Function returns the number of elements in the range [first,last) that compare equal to val. The return type (iterator_traits<InputIterator>::difference_type) is a signed integral type. To use this function, we have to use either <bits/stdc++> header or <algorithm> header.
Complexity
Linear in the distance between first and last: Compares once each element.
Data races
The objects in the range [first,last) are accessed (each object is accessed exactly once).
Exceptions
Throws if either an element comparison or an operation on an iterator throws. Note that invalid arguments cause undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* std::count() returns number of occurrences of an element in a given range. Returns the number of elements in the range [first,last) that compare equal to val. */ /* C++ code example to count the number of occurences of particular element in array ,string, vector,etc. */ #include<bits/stdc++.h> using namespace std; int main() { //declaration of integer array arr int arr[]={2,3,5,3,5,6,3,5,5,5,5,4,5,3,6,7}; int s =sizeof(arr)/sizeof(arr[0]); //declaration of vector container n vector<int> n={1,2,3,4,2,2,2,5,5,3,2,2,2,7,2}; // take a string str string str ="anagramandanagram"; //Here, we search the count of 5 in the array arr //you may change it also 2,3,6 ...as wish cout << "Number of times 5 appears :"; cout << count(arr, arr + s, 5); //Here, we search the count of 2 in the vector n //you may change it also 5,3,6... as wish cout << "\n\nNumber of times 2 appears : "; cout<<count(n.begin(), n.end(), 2); //Here, we search the count of 'a' in the string str //you may change it also b,c,d.. as wish cout << "\n\nNumber of times 'a' appears : "; cout << count(str.begin(), str.end(), 'a'); return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code. A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name { // code declarations }
To call the namespace-enabled version of either function or variable, prepend (::) the namespace name as follows:
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files. So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name { // code declarations }
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 { // code declarations namespace namespace_name2 { // code declarations } }
• Namespace is a feature added in C++ and not present in C. • A namespace is a declarative region that provides a scope to the identifiers (names of the types, function, variables etc) inside it. • Multiple namespace blocks with the same name are allowed. All declarations within those blocks are declared in the named scope. • Namespace declarations appear only at global scope. • Namespace declarations can be nested within another namespace. • Namespace declarations don't have access specifiers. (Public or private) • No need to give semicolon after the closing brace of definition of namespace. • We can split the definition of namespace over several units.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* namespaces in C++ language */ // A C++ code to demonstrate that we can define // methods outside namespace. #include <iostream> using namespace std; // Creating a namespace namespace ns { void display(); class happy { public: void display(); }; } // Defining methods of namespace void ns::happy::display() { cout << "ns::happy::display()\n"; } void ns::display() { cout << "ns::display()\n"; } // Driver code int main() { ns::happy obj; ns::display(); obj.display(); return 0; }
Vector Library end() Function in C++
Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin.
Syntax for Vector end() Function in C++
#include <vector> iterator end() noexcept; const_iterator end() const noexcept;
This function does not accept any parameter. Function returns an iterator to the element past the end of the sequence. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively). To use vector, include <vector> header. It does not point to the last element, thus to get the last element we can use vector::end()-1.
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns the iterator pointing to the past-the-last element of the vector container by vector::end function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }
Vector Library push_back() Function in C++
Add element at the end. Adds a new element at the end of the vector, after its current last element. The content of val is copied (or moved) to the new element. This effectively increases the container size by one, which causes an automatic reallocation of the allocated storage space if -and only if- the new vector size surpasses the current vector capacity. push_back() function is used to push elements into a vector from the back. The new value is inserted into the vector at the end, after the current last element and the container size is increased by 1.
Syntax for Vector push_back() Function in C++
#include <vector> void push_back (const value_type& val); void push_back (value_type&& val);
val
Value to be copied (or moved) to the new element. Member type value_type is the type of the elements in the container, defined in vector as an alias of its first template parameter (T). This function does not return any value. If a reallocation happens, the storage is allocated using the container's allocator, which may throw exceptions on failure (for the default allocator, bad_alloc is thrown if the allocation request does not succeed).
Complexity
Constant (amortized time, reallocation may happen). If a reallocation happens, the reallocation is itself up to linear in the entire size.
Iterator validity
If a reallocation happens, all iterators, pointers and references related to the container are invalidated. Otherwise, only the end iterator is invalidated, and all iterators, pointers and references to elements are guaranteed to keep referring to the same elements they were referring to before the call.
Data races
The container is modified. If a reallocation happens, all contained elements are modified. Otherwise, no existing element is accessed, and concurrently accessing or modifying them is safe.
Exception safety
If no reallocations happen, there are no changes in the container in case of exception (strong guarantee). If a reallocation happens, the strong guarantee is also given if the type of the elements is either copyable or no-throw moveable. Otherwise, the container is guaranteed to end in a valid state (basic guarantee). If allocator_traits::construct is not supported with val as argument, it causes undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* vector::push_back() is a library function of "vector" header, it is used to insert/add an element at the end of the vector, it accepts an element of the same type and adds the given element at the end of the vector and increases the size of the vector. */ //C++ STL program code example to demonstrate example of vector::push_back() function #include <iostream> #include <vector> using namespace std; int main() { //vector declaration vector<int> v1; //inserting elements and printing size cout << "size of v1: " << v1.size() << endl; v1.push_back(10); cout << "size of v1: " << v1.size() << endl; v1.push_back(20); v1.push_back(30); v1.push_back(40); v1.push_back(50); cout << "size of v1: " << v1.size() << endl; //printing all elements cout << "elements of vector v1..." << endl; for (int x : v1) cout << x << " "; cout << endl; return 0; }
Vector Library size() Function in C++
Return size. Returns the number of elements in the vector. This is the number of actual objects held in the vector, which is not necessarily equal to its storage capacity. vector::size() is a library function of "vector" header, it is used to get the size of a vector, it returns the total number of elements in the vector. The dynamic array can be created by using a vector in C++. One or more elements can be inserted into or removed from the vector at the run time that increases or decreases the size of the vector. The size or length of the vector can be counted using any loop or the built-in function named size().
Syntax for Vector size() Function in C++
#include <vector> size_type size() const noexcept;
This function does not accept any parameter. Function returns the number of elements in the container. Member type size_type is an unsigned integral type.
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed. No contained elements are accessed: concurrently accessing or modifying them is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* get the size of a vector, it returns the total number of elements in the vector by vector::size() library function. */ #include <bits/stdc++.h> using namespace std; int main() { // Initializing a vector of string type vector<string> vec = { "Happy", "8)", "Codings" }; // Clearing the vector // Now size is equal to 0 vec.clear(); // Typecasting vec.size() to int for (int i = 0; i < (int)vec.size() - 1; i++) cout << vec[i] << ' '; cout << "Happy8)Codings"; return 0; }
If Else Statement in C++
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement,
Syntax for If Statement in C++
if (condition) { // body of if statement }
The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Syntax for If...Else Statement
if (condition) { // block of code if condition is true } else { // block of code if condition is false }
The if..else statement evaluates the condition inside the parenthesis. If the condition evaluates true, the code inside the body of if is executed, the code inside the body of else is skipped from execution. If the condition evaluates false, the code inside the body of else is executed, the code inside the body of if is skipped from execution. The if...else statement is used to execute a block of code among two alternatives. However, if we need to make a choice between more than two alternatives, we use the if...else if...else statement.
Syntax for If...Else...Else If Statement in C++
if (condition1) { // code block 1 } else if (condition2){ // code block 2 } else { // code block 3 }
• If condition1 evaluates to true, the code block 1 is executed. • If condition1 evaluates to false, then condition2 is evaluated. • If condition2 is true, the code block 2 is executed. • If condition2 is false, the code block 3 is executed. There can be more than one else if statement but only one if and else statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax for If Else If Ladder in C++
if (condition) statement 1; else if (condition) statement 2; . . else statement;
Working of the if-else-if ladder: 1. Control falls into the if block. 2. The flow jumps to Condition 1. 3. Condition is tested. If Condition yields true, goto Step 4. If Condition yields false, goto Step 5. 4. The present block is executed. Goto Step 7. 5. The flow jumps to Condition 2. If Condition yields true, goto step 4. If Condition yields false, goto Step 6. 6. The flow jumps to Condition 3. If Condition yields true, goto step 4. If Condition yields false, execute else block. Goto Step 7. 7. Exits the if-else-if ladder. • The if else ladder statement in C++ programming language is used to check set of conditions in sequence. • This is useful when we want to selectively executes one code block(out of many) based on certain conditions. • It allows us to check for multiple condition expressions and execute different code blocks for more than two conditions. • A condition expression is tested only when all previous if conditions in if-else ladder is false. • If any of the conditional expression evaluates to true, then it will execute the corresponding code block and exits whole if-else ladder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* If Else Statement in C++ Language */ #include <iostream> using namespace std; int main () { // local variable declaration: int a = 100; // check the boolean condition if( a < 20 ) { // if condition is true then print the following cout << "a is less than 20;" << endl; } else { // if condition is false then print the following cout << "a is not less than 20;" << endl; } cout << "value of a is : " << a << endl; return 0; }
Vectors in C++ Language
In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program.
Declaration for Vectors in C++
std::vector<T> vector_name;
The type parameter <T> specifies the type of the vector. It can be any primitive data type such as int, char, float, etc.
Initialization for Vectors in C++
// Vector initialization method 1 // Initializer list vector<int> vector1 = {1, 2, 3, 4, 5};
We are initializing the vector by providing values directly to the vector. vector1 is initialized with values 1, 2, 3, 4, 5.
// Vector initialization method 2 vector<int> vector3(5, 12);
Here, 5 is the size of the vector and 8 is the value. This code creates an int vector with size 5 and initializes the vector with the value of 8. So, the vector is equivalent to
vector<int> vector2 = {8, 8, 8, 8, 8};
The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index. Change Vector Element: We can change an element of the vector using the same at() function. Delete Elements from C++ Vectors: To delete a single element from a vector, we use the pop_back() function. In C++, the vector header file provides various functions that can be used to perform different operations on a vector. • size(): returns the number of elements present in the vector. • clear(): removes all the elements of the vector. • front(): returns the first element of the vector. • back(): returns the last element of the vector. • empty(): returns 1 (true) if the vector is empty. • capacity(): check the overall size of a vector. Vector iterators are used to point to the memory address of a vector element. In some ways, they act like pointers.
Syntax for Vector Iterators in C++
vector<T>::iterator iteratorName;
We can initialize vector iterators using the begin() and end() functions. The begin() function returns an iterator that points to the first element of the vector. The end() function points to the theoretical element that comes after the final element of the vector.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Vectors in C++ language */ // C++ program to illustrate the capacity function in vector #include <iostream> #include <vector> using namespace std; int main() { vector<int> myvector; for (int i = 1; i <= 5; i++) myvector.push_back(i); cout << "Size : " << myvector.size(); cout << "\nCapacity : " << myvector.capacity(); cout << "\nMax_Size : " << myvector.max_size(); // resizes the vector size to 4 myvector.resize(4); // prints the vector size after resize() cout << "\nSize : " << myvector.size(); // checks if the vector is empty or not if (myvector.empty() == false) cout << "\nVector is not empty"; else cout << "\nVector is empty"; // Shrinks the vector myvector.shrink_to_fit(); cout << "\nVector elements are: "; for (auto it = myvector.begin(); it != myvector.end(); it++) cout << *it << " "; return 0; }
Vector Library begin() Function in C++
Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector.
Syntax for Vector begin() Function in C++
#include <vector> iterator begin() noexcept; const_iterator begin() const noexcept;
This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns a random access iterator pointing to the first element of the vector by std::vector::begin() function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }
Algorithm Library count_if() Function in C++
Return number of elements in range satisfying condition. Returns the number of elements in the range [first,last) for which pred is true. The count_if() function is available in the <algorithm.h> header file in C++. This function helps to count the occurrence of elements in the list, based on some condition. If the condition is true, then the element is counted. Otherwise, it is not counted.
Syntax for Algorithm count_if() Function in C++
template <class InputIterator, class UnaryPredicate> typename iterator_traits<InputIterator>::difference_type count_if (InputIterator first, InputIterator last, UnaryPredicate pred);
first, last
Input iterators to the initial and final positions of the sequence of elements. The range used is [first,last), which contains all the elements between first and last, including the element pointed by first but not the element pointed by last.
pred
Unary function that accepts an element in the range as argument, and returns a value convertible to bool. The value returned indicates whether the element is counted by this function. The function shall not modify its argument. This can either be a function pointer or a function object. Function returns the number of elements in the range [first,last) for which pred does not return false. The return type (iterator_traits<InputIterator>::difference_type) is a signed integral type.
Complexity
Linear in the distance between first and last: Calls pred once for each element.
Data races
The objects in the range [first,last) are accessed (each object is accessed exactly once).
Exceptions
Throws if pred throws or if any of the operations on iterators throws. Note that invalid arguments cause undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* The C++ algorithm::count_if function returns the number of elements in the range [first, last) for which the unary function pred returns true. */ /* Return number of elements in range satisfying condition count_if() function code example */ #include <iostream> #include <algorithm> #include <vector> using namespace std; bool isEven (int i) {return (i%2==0);} int main (){ vector<int> vec{11, 12, 13, 14, 15, 16, 17}; //count of even numbers in the vector int retval1 = count_if(vec.begin(), vec.end(), isEven); cout<<"Count of even numbers: "<<retval1<<endl; //count of odd numbers in the vector int retval2 = count_if(vec.begin(), vec.end(), [](int i) {return (i%2==1);}); cout<<"Count of odd numbers: "<<retval2<<endl; return 0; }
For Loop Statement in C++
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Syntax of For Loop Statement in C++
for (initialization; condition; update) { // body of-loop }
initialization
initializes variables and is executed only once.
condition
if true, the body of for loop is executed, if false, the for loop is terminated.
update
updates the value of initialized variables and again checks the condition. A new range-based for loop was introduced to work with collections such as arrays and vectors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* For Loop Statement in C++ Language */ // C++ program to find the sum of first n natural numbers // positive integers such as 1,2,3,...n are known as natural numbers #include <iostream> using namespace std; int main() { int num, sum; sum = 0; cout << "Enter a positive integer: "; cin >> num; for (int i = 1; i <= num; ++i) { sum += i; } cout << "Sum = " << sum << endl; return 0; }


This c++ program code is helpful to manage a menu "base database" using array and shows how to prevent from a wrong input. Its simple to introduce the basic database management
C++ Sample code Print first 100 "Ramanujan Numbers" by TWO WAYS 1st way is printing ramunajan numbers from RN taking RN from 0 to INFINITY & print first 100 numbers. 2nd