Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

A generic stack that holds two values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* A generic stack that holds two values. */ #include <iostream> using namespace std; #define SIZE 10 template <class StackType> class stack { StackType stck[SIZE][2]; int topOfStack; public: void init() { topOfStack = 0; } void push(StackType ob, StackType object2); StackType pop(StackType &object2); }; template <class StackType> void stack<StackType>::push(StackType ob, StackType object2) { if(topOfStack==SIZE) { cout << "Stack is full.\n"; return; } stck[topOfStack][0] = ob; stck[topOfStack][1] = object2; topOfStack++; } template <class StackType> StackType stack<StackType>::pop(StackType &object2) { if(topOfStack==0) { cout << "Stack is empty.\n"; return 0; } topOfStack--; object2 = stck[topOfStack][1]; return stck[topOfStack][0]; } int main() { stack<char> stack1, stackObject2; int i; char ch; stack1.init(); stackObject2.init(); stack1.push('a', 'b'); stackObject2.push('x', 'z'); stack1.push('b', 'd'); stackObject2.push('y', 'e'); stack1.push('c', 'a'); stackObject2.push('z', 'x'); for(i = 0; i <3; i++) { cout << "Pop stack1: " << stack1.pop(ch); cout << ' ' << ch << endl; } for(i = 0; i <3; i++) { cout << "Pop stackObject2: " << stackObject2.pop(ch); cout << ' ' << ch << endl; } // demonstrate double stacks stack<double> doubleValueStack1, doubleValueStack2; // create two stacks double d; doubleValueStack1.init(); doubleValueStack2.init(); doubleValueStack1.push(1.1, 2.0); doubleValueStack2.push(2.2, 3.0); doubleValueStack1.push(3.3, 4.0); doubleValueStack2.push(4.4, 5.0); doubleValueStack1.push(5.5, 6.0); doubleValueStack2.push(6.6, 7.0); for(i = 0; i <3; i++) { cout << "Pop doubleValueStack1: " << doubleValueStack1.pop(d); cout << ' '<< d << endl; } for(i = 0; i <3; i++) { cout << "Pop doubleValueStack2: " << doubleValueStack2.pop(d); cout << ' '<< d << endl; } return 0; }

Templates are powerful features of C++ which allows us to write generic programs. Similar to function templates, we can use class templates to create a single class to work with different data types. Class templates come in handy as they can make our code shorter and more manageable. A class template starts with the keyword template followed by template parameter(s) inside <> which is followed by the class declaration. T is the template argument which is a placeholder for the data type used, and class is a keyword. Inside the class body, a member variable var and a member function functionName() are both of type T.

Remove top element. Removes the element on top of the stack, effectively reducing its size by one. The C++ function std::stack::pop() removes top element from the stack and reduces size of stack by one. This function calls destructor on removed element. The element removed is the latest element inserted into the stack, whose value can be retrieved by calling member stack::top. This calls the removed element's destructor. This member function effectively calls the member function pop_back of the underlying container object.

In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.

#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.

Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.

In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.

An array is a collection of data items, all of the same type, accessed using a common name. A one-dimensional array is like a list; A two dimensional array is like a table; The C++ language places no limits on the number of dimensions in an array, though specific implementations may. Some texts refer to one-dimensional arrays as vectors, two-dimensional arrays as matrices, and use the general term arrays when the number of dimensions is unspecified or unimportant. (2D) array in C++ programming is also known as matrix. A matrix can be represented as a table of rows and columns. In C/C++, we can define multi dimensional arrays in simple words as array of arrays. Data in multi dimensional arrays are stored in tabular form (in row major order).

A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.

Insert element. Inserts a new element at the top of the stack, above its current top element. The content of this new element is initialized to a copy of val. This member function effectively calls the member function push_back of the underlying container object. C++ Stack push () function is used for adding new elements at the top of the stack. If we have an array of type stack and by using the push() function we can insert new elements in the stack. The elements are inserted at the top of the stack. The element which is inserted most initially is deleted at the end and vice versa as stacks follow LIFO principle.

LIFO stack. Stacks are a type of container adaptor, specifically designed to operate in a LIFO context (last-in first-out), where elements are inserted and extracted only from one end of the container. stacks are implemented as container adaptors, which are classes that use an encapsulated object of a specific container class as its underlying container, providing a specific set of member functions to access its elements. Elements are pushed/popped from the "back" of the specific container, which is known as the top of the stack.

The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.

In the C++ Programming Language, the #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. Macro definitions are not variables and cannot be changed by your program code like variables. You generally use this syntax when creating constants that represent numbers, strings or expressions. The syntax for creating a constant using #define in the C++ is: #define token value

A C++ template is a powerful feature added to C++. It allows you to define the generic classes and generic functions and thus provides support for generic programming. Generic programming is a technique where generic types are used as parameters in algorithms so that they can work for a variety of data types. We can define a template for a function. For example, if we have an add() function, we can create versions of the add function for adding the int, float or double type values. Where Ttype: It is a placeholder name for a data type used by the function. It is used within the function definition. It is only a placeholder that the compiler will automatically replace this placeholder with the actual data type. class: A class keyword is used to specify a generic type in a template declaration.

In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.






Insertion sort algorithm sort data by inserting them one by one into the List. This algorithm is based on sorting playing cards by picking & inserting them one by one. Here we take data