C++ Programming Code Examples
C++ > Code Snippets Code Examples
Demonstrate raw storage iterators
/* Demonstrate raw storage iterators */
#include <iostream>
#include <deque>
#include <memory>
#include <algorithm>
using namespace std;
class MyClass {
int a, b;
int sum;
public:
MyClass() {
a = b = 0;
sum = 0;
}
MyClass(int x, int y) {
a = x;
b = y;
}
MyClass(const MyClass &o) {
a = o.a; b = o.b;
sum = o.sum;
}
MyClass operator=(const MyClass &o) {
a = o.a; b = o.b;
return *this;
}
void setsum() {
sum = a+b;
}
void show() {
cout << a << "," << b;
cout << " Sum is: " << sum << endl;
}
};
int main()
{
unsigned char raw1[100], raw2[100];
MyClass *p;
deque<MyClass> dequeObject(5);
int i;
for(i = 0; i <5; i++) {
dequeObject[ i ] = MyClass(i, i);
dequeObject[ i ].setsum();
}
// store deque in uninitialized memory the wrong way
copy(dequeObject.begin(), dequeObject.end(), (MyClass *)raw1);
cout << "Contents of raw memory (incorrect):\n";
p = (MyClass *) raw1;
for(i = 0; i <5; i++)
p[ i ].show();
// the right way
copy(dequeObject.begin(), dequeObject.end(),raw_storage_iterator<MyClass *, MyClass>((MyClass *)raw2));
cout << "Contents of raw memory (correct):\n";
p = (MyClass *) raw2;
for(i = 0; i <5; i++)
p[ i ].show();
return 0;
}
Access element. Returns a reference to the element at position n in the deque container. This operator is used to reference the element present at position given inside the operator. It is similar to the at() function, the only difference is that the at() function throws an out-of-range exception when the position is not in the bounds of the size of deque, while this operator causes undefined behavior. A similar member function, deque::at, has the same behavior as this operator function, except that deque::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception. Function returns the element at the specified position in the container.
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
Return iterator to end. Returns an iterator referring to the past-the-end element in the deque container. The past-the-end element is the theoretical element that would follow the last element in the deque container. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with deque::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as deque::begin. deque::end() is an inbuilt function in C++ STL which is declared in<deque> header file. deque::end() returns an iterator which is referencing next to the last element of the deque container associated with the function. Both begin() and end() are used to iterate through the deque container.
Return iterator to beginning. Returns an iterator pointing to the first element in the deque container. Notice that, unlike member deque::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. deque::begin() is an inbuilt function in C++ STL which is declared in header file. deque::begin() returns an iterator which is referencing to the first element of the deque container associated with the function. Both begin() and end() are used to iterate through the deque container. This function does not accept any parameter.
deque (usually pronounced like "deck") is an irregular acronym of double-ended queue. Double-ended queues are sequence containers with dynamic sizes that can be expanded or contracted on both ends (either its front or its back). Specific libraries may implement deques in different ways, generally as some form of dynamic array. But in any case, they allow for the individual elements to be accessed directly through random access iterators, with storage handled automatically by expanding and contracting the container as needed. Therefore, they provide a functionality similar to vectors, but with efficient insertion and deletion of elements also at the beginning of the sequence, and not only at its end. But, unlike vectors, deques are not guaranteed to store all its elements in contiguous storage locations: accessing elements in a deque by offsetting a pointer to another element causes undefined behavior.
copy() function is used to copy items from one iterator to another iterator with a specific range. We can define the start and end position of the source and it will copy all items in this rage to a different destination. To use copy() function, we need to include <bits/stdc+.h> or header file. It copies all the elements pointed by first and last. first element is included in the output but last is not. output is the start position of the final result iterator. It returns one iterator to the end of the destination range where elements have been copied. Function returns an iterator to the end of the destination range where elements have been copied.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a this pointer. In C++ programming, this is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++: • It can be used to pass current object as a parameter to another method. • It can be used to refer current class instance variable. • It can be used to declare indexers. To understand 'this' pointer, it is important to know how objects look at functions and data members of a class.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
To print "Pascal Triangle" in C++, you have to enter the Number of Line. So to Print "Pascal Triangle", you have to use three For Loops as shown here in the C++ Programming samples
Converts any string to Lowercase. Converts a string to "uppercase". Appends a string at the end of another. Appends first 'n' characters of a string at the end of another. Copies a string
To achieve Addition of two matrix we need 2 "Dimensional Array" and add their elements with each other, print result on screen. Enter elements of firts matrix. Enter elements of 2.