Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Exchange elements from two different types of containers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Exchange elements from two different types of containers. */ #include <iostream> #include <vector> #include <deque> #include <algorithm> using namespace std; int main() { vector<char> vectorObject(10); deque<char> deq(10); int i; for(i = 0; i < 10; i++) vectorObject[ i ] = 'A' + i; for(i = 0; i < 10; i++) deq[ i ] = '0' + i; cout << "Original contents of vectorObject:"; for(i = 0; i < 10; i++) cout << vectorObject[ i ] << " "; cout << endl; cout << "Original contents of deq:"; for(i = 0; i < 10; i++) cout << deq[ i ] << " "; cout << endl; // swap ranges in vectorObject and deq swap_ranges(vectorObject.begin() + 2, vectorObject.end() - 3, deq.begin() + 4); cout << "Contents of vectorObject after swap:"; for(i = 0; i < 10; i++) cout << vectorObject[ i ] << " "; cout << endl; cout << "Contents of deq after swap:"; for(i = 0; i < 10; i++) cout << deq[ i ] << " "; cout << endl; return 0; }
Vectors in C++ Language
In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program.
Declaration for Vectors in C++
std::vector<T> vector_name;
The type parameter <T> specifies the type of the vector. It can be any primitive data type such as int, char, float, etc.
Initialization for Vectors in C++
// Vector initialization method 1 // Initializer list vector<int> vector1 = {1, 2, 3, 4, 5};
We are initializing the vector by providing values directly to the vector. vector1 is initialized with values 1, 2, 3, 4, 5.
// Vector initialization method 2 vector<int> vector3(5, 12);
Here, 5 is the size of the vector and 8 is the value. This code creates an int vector with size 5 and initializes the vector with the value of 8. So, the vector is equivalent to
vector<int> vector2 = {8, 8, 8, 8, 8};
The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index. Change Vector Element: We can change an element of the vector using the same at() function. Delete Elements from C++ Vectors: To delete a single element from a vector, we use the pop_back() function. In C++, the vector header file provides various functions that can be used to perform different operations on a vector. • size(): returns the number of elements present in the vector. • clear(): removes all the elements of the vector. • front(): returns the first element of the vector. • back(): returns the last element of the vector. • empty(): returns 1 (true) if the vector is empty. • capacity(): check the overall size of a vector. Vector iterators are used to point to the memory address of a vector element. In some ways, they act like pointers.
Syntax for Vector Iterators in C++
vector<T>::iterator iteratorName;
We can initialize vector iterators using the begin() and end() functions. The begin() function returns an iterator that points to the first element of the vector. The end() function points to the theoretical element that comes after the final element of the vector.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Vectors in C++ language */ // C++ program to illustrate the capacity function in vector #include <iostream> #include <vector> using namespace std; int main() { vector<int> myvector; for (int i = 1; i <= 5; i++) myvector.push_back(i); cout << "Size : " << myvector.size(); cout << "\nCapacity : " << myvector.capacity(); cout << "\nMax_Size : " << myvector.max_size(); // resizes the vector size to 4 myvector.resize(4); // prints the vector size after resize() cout << "\nSize : " << myvector.size(); // checks if the vector is empty or not if (myvector.empty() == false) cout << "\nVector is not empty"; else cout << "\nVector is empty"; // Shrinks the vector myvector.shrink_to_fit(); cout << "\nVector elements are: "; for (auto it = myvector.begin(); it != myvector.end(); it++) cout << *it << " "; return 0; }
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code. A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name { // code declarations }
To call the namespace-enabled version of either function or variable, prepend (::) the namespace name as follows:
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files. So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name { // code declarations }
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 { // code declarations namespace namespace_name2 { // code declarations } }
• Namespace is a feature added in C++ and not present in C. • A namespace is a declarative region that provides a scope to the identifiers (names of the types, function, variables etc) inside it. • Multiple namespace blocks with the same name are allowed. All declarations within those blocks are declared in the named scope. • Namespace declarations appear only at global scope. • Namespace declarations can be nested within another namespace. • Namespace declarations don't have access specifiers. (Public or private) • No need to give semicolon after the closing brace of definition of namespace. • We can split the definition of namespace over several units.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* namespaces in C++ language */ // A C++ code to demonstrate that we can define // methods outside namespace. #include <iostream> using namespace std; // Creating a namespace namespace ns { void display(); class happy { public: void display(); }; } // Defining methods of namespace void ns::happy::display() { cout << "ns::happy::display()\n"; } void ns::display() { cout << "ns::display()\n"; } // Driver code int main() { ns::happy obj; ns::display(); obj.display(); return 0; }
For Loop Statement in C++
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Syntax of For Loop Statement in C++
for (initialization; condition; update) { // body of-loop }
initialization
initializes variables and is executed only once.
condition
if true, the body of for loop is executed, if false, the for loop is terminated.
update
updates the value of initialized variables and again checks the condition. A new range-based for loop was introduced to work with collections such as arrays and vectors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* For Loop Statement in C++ Language */ // C++ program to find the sum of first n natural numbers // positive integers such as 1,2,3,...n are known as natural numbers #include <iostream> using namespace std; int main() { int num, sum; sum = 0; cout << "Enter a positive integer: "; cin >> num; for (int i = 1; i <= num; ++i) { sum += i; } cout << "Sum = " << sum << endl; return 0; }
Vector Library begin() Function in C++
Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector.
Syntax for Vector begin() Function in C++
#include <vector> iterator begin() noexcept; const_iterator begin() const noexcept;
This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns a random access iterator pointing to the first element of the vector by std::vector::begin() function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }
Vector Library Operator Index [] in C++
Access element. Returns a reference to the element at position n in the vector container. A similar member function, vector::at, has the same behavior as this operator function, except that vector::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception. Portable programs should never call this function with an argument n that is out of range, since this causes undefined behavior.
Syntax for Vector Operator Index [] in C++
#include <vector> reference operator[] (size_type n); const_reference operator[] (size_type n) const;
n
Position of an element in the container. Notice that the first element has a position of 0 (not 1). Member type size_type is an unsigned integral type. Function returns the element at the specified position in the vector. If the vector object is const-qualified, the function returns a const_reference. Otherwise, it returns a reference. Member types reference and const_reference are the reference types to the elements of the container (see vector member types).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). The reference returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
If the container size is greater than n, the function never throws exceptions (no-throw guarantee). Otherwise, the behavior is undefined.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Returns a reference to the element at specified location pos. No bounds checking is performed. Unlike std::map::operator[], this operator never inserts a new element into the container. Accessing a nonexistent element through this operator is undefined behavior. */ /* Access element from a vector by vector::operator[] code example */ #include <iostream> #include <vector> int main () { std::vector<int> myvector (10); // 10 zero-initialized elements std::vector<int>::size_type sz = myvector.size(); // assign some values: for (unsigned i=0; i<sz; i++) myvector[i]=i; // reverse vector using operator[]: for (unsigned i=0; i<sz/2; i++) { int temp; temp = myvector[sz-1-i]; myvector[sz-1-i]=myvector[i]; myvector[i]=temp; } std::cout << "myvector contains:"; for (unsigned i=0; i<sz; i++) std::cout << ' ' << myvector[i]; std::cout << '\n'; return 0; }
Deque Library begin() Function in C++
Return iterator to beginning. Returns an iterator pointing to the first element in the deque container. Notice that, unlike member deque::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. deque::begin() is an inbuilt function in C++ STL which is declared in header file. deque::begin() returns an iterator which is referencing to the first element of the deque container associated with the function. Both begin() and end() are used to iterate through the deque container.
Syntax for Deque begin() Function in C++
#include <deque> iterator begin() noexcept; const_iterator begin() const noexcept;
This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container. If the deque object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively).
Complexity
Constant
Iterator validity
No changes.
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* returns an iterator pointing to the first element in the deque container by std::deque::begin function code example. */ // CPP program to illustrate implementation of end() function #include <deque> #include <iostream> using namespace std; int main() { // declaration of deque container deque<int> mydeque{ 1, 2, 3, 4, 5 }; // using end() to print deque for (auto it = mydeque.begin(); it != mydeque.end(); ++it) cout << ' ' << *it; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
Deque in C++ Language
deque (usually pronounced like "deck") is an irregular acronym of double-ended queue. Double-ended queues are sequence containers with dynamic sizes that can be expanded or contracted on both ends (either its front or its back). Specific libraries may implement deques in different ways, generally as some form of dynamic array. But in any case, they allow for the individual elements to be accessed directly through random access iterators, with storage handled automatically by expanding and contracting the container as needed. Therefore, they provide a functionality similar to vectors, but with efficient insertion and deletion of elements also at the beginning of the sequence, and not only at its end. But, unlike vectors, deques are not guaranteed to store all its elements in contiguous storage locations: accessing elements in a deque by offsetting a pointer to another element causes undefined behavior. Both vectors and deques provide a very similar interface and can be used for similar purposes, but internally both work in quite different ways: While vectors use a single array that needs to be occasionally reallocated for growth, the elements of a deque can be scattered in different chunks of storage, with the container keeping the necessary information internally to provide direct access to any of its elements in constant time and with a uniform sequential interface (through iterators). Therefore, deques are a little more complex internally than vectors, but this allows them to grow more efficiently under certain circumstances, especially with very long sequences, where reallocations become more expensive. For operations that involve frequent insertion or removals of elements at positions other than the beginning or the end, deques perform worse and have less consistent iterators and references than lists and forward lists.
Syntax for Deque in C++
#include <deque> template < class T, class Alloc = allocator<T> > class deque;
T
Type of the elements. Aliased as member type deque::value_type.
Alloc
Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent. Aliased as member type deque::allocator_type. Sequence: Elements in sequence containers are ordered in a strict linear sequence. Individual elements are accessed by their position in this sequence. Dynamic array: Generally implemented as a dynamic array, it allows direct access to any element in the sequence and provides relatively fast addition/removal of elements at the beginning or the end of the sequence. Allocator-aware: The container uses an allocator object to dynamically handle its storage needs.
Initialize a Deque in C++
// method 1: initializer list deque<int> deque1 = {1, 2, 3, 4, 5}; // method 2: uniform initialization deque<int> deque2 {1, 2, 3, 4, 5};
Deque Member Types
• value_type T (First template parameter) • allocator_type Alloc (Second template parameter), default: allocator<value_type> • reference value_type& • const_reference const value_type& • pointer Alloc::pointer, default: value_type* • const_pointer Alloc::const_pointer, default: value_type* • iterator a random access iterator to value_type • const_iterator a random access iterator to const value_type • reverse_iterator reverse_iterator <iterator> • const_reverse_iterator reverse_iterator <const_iterator> • difference_type ptrdiff_t • size_type size_t
C++ Deque Functions
• deque() Construct a deque object. • ~deque() Destroys container by deallocating container memory. • operator=() Assign content to a deque. • empty() Checks whether the deque is empty or not. • size() Returns the length of the deque in terms of bytes. • max_size() Returns the maximum length of the deque. • resize() Changes the size of the deque by specified number of elements. • shrink_to_fit() Reduces the capacity of the deque equal to fit its size. • at() Access an element of the deque. • operator[]() Access an element of the deque. • front() Access first element of the deque. • back() Access last element of the deque. • begin() Returns iterator pointing to the first element of the deque. • end() Returns iterator pointing to the past-the-last element of the deque. • rbegin() Returns reverse iterator to the last element of the deque. • rend() Returns reverse iterator to the element preceding the first element of the deque. • cbegin() Returns const_iterator pointing to the first element of the deque. • cend() Returns const_iterator pointing to the past-the-last element of the deque. • crbegin() Returns const_reverse_iterator to the last element of the deque. • crend() Returns const_reverse_iterator to the element preceding the first element of the deque. • assign() Assign deque content. • clear() Clears all elements of the deque. • pop_front() Deletes first element of the deque. • push_front() Adds a new element at the beginning of the deque. • pop_back() Deletes last element of the deque. • push_back() Adds a new element at the end of the deque. • insert() Insert elements in the deque. • erase() Deletes either a single element or range of elements from a deque. • emplace() Constructs and inserts a new element at specified position in the deque • emplace_front() Constructs and inserts a new element at the beginning of the deque. • emplace_back() Constructs and inserts a new element at the end of the deque. • swap() Exchanges elements between two deques. • get_allocator() Return a copy of allocator object associated with the deque. • operator == Checks whether two deques are equal or not. • operator != Checks whether two deques are unequal or not. • operator < Checks whether the first deque is less than the other or not. • operator > Checks whether the first deque is greater than the other or not. • operator <= Checks whether the first deque is less than or equal to the other or not. • operator >= Checks whether the first deque is greater than or equal to the other or not. • swap() Exchanges elements between two deques.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* In C++, the STL deque is a sequential container that provides the functionality of a double-ended queue data structure. */ #include <iostream> #include <deque> using namespace std; // function prototype void display_deque(deque<int>); int main() { // uniform initialization deque<int> deque1 {1, 2, 3, 4, 5}; cout << "deque1 = "; // display elements of deque1 for (int num : deque1) { cout << num << ", "; } return 0; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Algorithm Library swap_ranges() Function in C++
Exchange values of two ranges. Exchanges the values of each of the elements in the range [first1,last1) with those of their respective elements in the range beginning at first2. std::swap is used for swapping of elements between two containers. One of its variation is std::swap_ranges, which as the name suggests is used for swapping the elements within a range. It simply exchanges the values of each of the elements in the range [first1, last1) with those of their respective elements in the range beginning at first2. If we look at its internal working, we will find that this function itself uses std::swap(). The function calls swap (unqualified) to exchange the elements.
Syntax for Algorithm swap_ranges() Function in C++
#include <algorithm> template <class ForwardIterator1, class ForwardIterator2> ForwardIterator2 swap_ranges (ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2);
first1, last1
Forward iterators to the initial and final positions in one of the sequences to be swapped. The range used is [first1,last1), which contains all the elements between first1 and last1, including the element pointed by first1 but not the element pointed by last1.
first2
Forward iterator to the initial position in the other sequence to be swapped. The range used includes the same number of elements as the range [first1,last1). The two ranges shall not overlap. The ranges shall not overlap. swap shall be defined to exchange the types pointed by both iterator types symmetrically (in both orders). Function returns an iterator to the last element swapped in the second sequence.
Complexity
Linear in the distance between first and last: Performs a swap operation for each element in the range.
Data races
The objects in both ranges are modified.
Exceptions
Throws if either an element assignment or an operation on iterators throws. Note that invalid arguments cause undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* C++ Algorithm swap_ranges() exchanges the elements in the range [first1, last2) with the elements present in the range starting from first2. /* Exchange values of two ranges by swap_ranges() function code example */ #include <algorithm> #include <iostream> #include <vector> #include <iterator> using namespace std; int main() { vector<int> v1 = { 1, 2, 3 }; vector<int> v2 = { 4, 5, 6, 7, 8 }; swap_ranges(v1.begin(), v1.end(), v2.begin()); cout << "v1: "; copy(v1.begin(), v1.end(), ostream_iterator<int>(cout, ", ")); cout << endl; cout << "v2: "; copy(v2.begin(), v2.end(), ostream_iterator<int>(cout, ", ")); cout << endl; }
Deque Library operator[] Index in C++
Access element. Returns a reference to the element at position n in the deque container. This operator is used to reference the element present at position given inside the operator. It is similar to the at() function, the only difference is that the at() function throws an out-of-range exception when the position is not in the bounds of the size of deque, while this operator causes undefined behavior. A similar member function, deque::at, has the same behavior as this operator function, except that deque::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception.
Syntax for Deque operator[] Index in C++
#include <deque> reference operator[] (size_type n); const_reference operator[] (size_type n) const;
n
Position of an element in the container. Notice that the first element has a position of 0 (not 1). Member type size_type is an unsigned integral type. Function returns the element at the specified position in the container. Member types reference and const_reference are the reference types to the elements of the container (see deque member types).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). Element n is potentially accessed or modified. Concurrently accessing or modifying other elements is safe.
Exception safety
If the container size is greater than n, the function never throws exceptions (no-throw guarantee). Otherwise, the behavior is undefined (which may include throwing).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* C++ Deque operator[] function is used to access the element at specified position pos. If position pos is greater than the size of container then it returns a value 0. */ /* Access element from Deque by operator[] code example */ // deque::operator[] example: reversing order #include <iostream> #include <deque> int main () { std::deque<int> mydeque (10); // 10 zero-initialized elements std::deque<int>::size_type sz = mydeque.size(); // assign some values: for (unsigned i=0; i<sz; i++) mydeque[i]=i; // reverse order of elements using operator[]: for (unsigned i=0; i<sz/2; i++) { int temp; temp = mydeque[sz-1-i]; mydeque[sz-1-i]=mydeque[i]; mydeque[i]=temp; } // print content: std::cout << "mydeque contains:"; for (unsigned i=0; i<sz; i++) std::cout << ' ' << mydeque[i]; std::cout << '\n'; return 0; }
Vector Library end() Function in C++
Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin.
Syntax for Vector end() Function in C++
#include <vector> iterator end() noexcept; const_iterator end() const noexcept;
This function does not accept any parameter. Function returns an iterator to the element past the end of the sequence. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively). To use vector, include <vector> header. It does not point to the last element, thus to get the last element we can use vector::end()-1.
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns the iterator pointing to the past-the-last element of the vector container by vector::end function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }


Program Declares the array of five element & the elements of that array are accessed using pointer. The five elements are entered by the user and stored in the integer array data. And