C++ Programming Code Examples
C++ > Code Snippets Code Examples
Multiple inheritance
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* Multiple inheritance
An example of multiple base classes. */
#include <iostream>
using namespace std;
class base1 {
protected:
int x;
public:
void showx() { cout << x << "\n"; }
};
class base2 {
protected:
int y;
public:
void showy() { cout << y << "\n"; }
};
// Inherit multiple base classes.
class derived: public base1, public base2 {
public:
void set(int i, int j) { x = i; y = j; }
};
int main()
{
derived ob;
ob.set(10, 20); // provided by derived
ob.showx(); // from base1
ob.showy(); // from base2
return 0;
}
Return Statement in C++
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression.
If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message.
If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
Syntax for Return Statement in C++
return[expression];
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* illustrate Methods returning a value using return statement in C++ code example */
#include <iostream>
using namespace std;
// non-void return type
// function to calculate sum
int SUM(int a, int b)
{
int s1 = a + b;
// method using the return
// statement to return a value
return s1;
}
// Driver method
int main()
{
int num1 = 10;
int num2 = 10;
int sum_of = SUM(num1, num2);
cout << "The sum is " << sum_of;
return 0;
}
Classes and Objects in C++ Language
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types.
A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
C++ Class Definitions
When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object.
A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the keyword class as follows:
class Box {
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};
Define C++ Objects
A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of basic types. Following statements declare two objects of class Box:
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Accessing the Data Members
The public data members of objects of a class can be accessed using the direct member access operator (.).
It is important to note that private and protected members can not be accessed directly using direct member access operator (.).
Classes and Objects in Detail
There are further interesting concepts related to C++ Classes and Objects which we will discuss in various sub-sections listed below:
• Class Member Functions: A member function of a class is a function that has its definition or its prototype within the class definition like any other variable.
• Class Access Modifiers: A class member can be defined as public, private or protected. By default members would be assumed as private.
• Constructor & Destructor: A class constructor is a special function in a class that is called when a new object of the class is created. A destructor is also a special function which is called when created object is deleted.
• Copy Constructor: The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously.
• Friend Functions: A friend function is permitted full access to private and protected members of a class.
• Inline Functions: With an inline function, the compiler tries to expand the code in the body of the function in place of a call to the function.
• this Pointer: Every object has a special pointer this which points to the object itself.
• Pointer to C++ Classes: A pointer to a class is done exactly the same way a pointer to a structure is. In fact a class is really just a structure with functions in it.
• Static Members of a Class: Both data members and function members of a class can be declared as static.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* using public and private in C++ Class */
// Program to illustrate the working of
// public and private in C++ Class
#include <iostream>
using namespace std;
class Room {
private:
double length;
double breadth;
double height;
public:
// function to initialize private variables
void initData(double len, double brth, double hgt) {
length = len;
breadth = brth;
height = hgt;
}
double calculateArea() {
return length * breadth;
}
double calculateVolume() {
return length * breadth * height;
}
};
int main() {
// create object of Room class
Room room1;
// pass the values of private variables as arguments
room1.initData(42.5, 30.8, 19.2);
cout << "Area of Room = " << room1.calculateArea() << endl;
cout << "Volume of Room = " << room1.calculateVolume() << endl;
return 0;
}
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main()
{
............
............
}
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
1) It cannot be used anywhere in the program
a) in particular, it cannot be called recursively
b) its address cannot be taken
2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace).
3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static.
4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;.
5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program).
6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed).
7) (since C++20) The main function cannot be a coroutine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* simple code example by main() function in C++ */
#include <iostream>
using namespace std;
int main() {
int day = 4;
switch (day) {
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;
}
return 0;
}
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc.
Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name {
// code declarations
}
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files.
So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name {
// code declarations
}
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 {
// code declarations
namespace namespace_name2 {
// code declarations
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* namespaces in C++ language */
// A C++ code to demonstrate that we can define
// methods outside namespace.
#include <iostream>
using namespace std;
// Creating a namespace
namespace ns
{
void display();
class happy
{
public:
void display();
};
}
// Defining methods of namespace
void ns::happy::display()
{
cout << "ns::happy::display()\n";
}
void ns::display()
{
cout << "ns::display()\n";
}
// Driver code
int main()
{
ns::happy obj;
ns::display();
obj.display();
return 0;
}
Constructors in C++ Language
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure.
Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object.
Whereas, Destructor on the other hand is used to destroy the class object.
• Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
Syntax for Default Constructor in C++
class_name(parameter1, parameter2, ...)
{
// constructor Definition
}
Syntax for Parameterized Constructor in C++
class class_name
{
public:
class_name(variables) //Parameterized constructor declared.
{
}
};
Syntax for Copy Constructors in C++
classname (const classname &obj) {
// body of constructor
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* A constructor is a special type of member function that is called automatically when an object is created. In C++, a constructor has the same name as that of the class and it does not have a return type. */
#include <iostream>
using namespace std;
// declare a class
class Wall {
private:
double length;
double height;
public:
// initialize variables with parameterized constructor
Wall(double len, double hgt) {
length = len;
height = hgt;
}
// copy constructor with a Wall object as parameter
// copies data of the obj parameter
Wall(Wall &obj) {
length = obj.length;
height = obj.height;
}
double calculateArea() {
return length * height;
}
};
int main() {
// create an object of Wall class
Wall wall1(10.5, 8.6);
// copy contents of wall1 to wall2
Wall wall2 = wall1;
// print areas of wall1 and wall2
cout << "Area of Wall 1: " << wall1.calculateArea() << endl;
cout << "Area of Wall 2: " << wall2.calculateArea();
return 0;
}
Standard Output Stream (cout) in C++
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout.
Syntax for cout in C++
cout << var_name;
//or
cout << "Some String";
<<
is the insertion operator
var_name
is usually a variable, but can also be an array element or elements of containers like vectors, lists, maps, etc.
The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output".
The cout object is used along with the insertion operator << in order to display a stream of characters.
The << operator can be used more than once with a combination of variables, strings, and manipulators.
cout is used for displaying data on the screen. The operator << called as insertion operator or put to operator. The Insertion operator can be overloaded. Insertion operator is similar to the printf() operation in C. cout is the object of ostream class. Data flow direction is from variable to output device. Multiple outputs can be displayed using cout.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* standard output stream (cout) in C++ language */
#include <iostream>
using namespace std;
int main() {
string str = "Do not interrupt me";
char ch = 'm';
// use cout with write()
cout.write(str,6);
cout << endl;
// use cout with put()
cout.put(ch);
return 0;
}
Inheritance in C++
In C++, inheritance is a process in which one object acquires all the properties and behaviors of its parent object automatically. In such way, you can reuse, extend or modify the attributes and behaviors which are defined in other class.
In C++, the class which inherits the members of another class is called derived class and the class whose members are inherited is called base class. The derived class is the specialized class for the base class.
Advantage of C++ Inheritance
You can reuse the members of your parent class. So, there is no need to define the member again. So less code is required in the class.
Base and Derived Classes:
A class can be derived from more than one classes, which means it can inherit data and functions from multiple base classes. To define a derived class, we use a class derivation list to specify the base class(es). A class derivation list names one or more base classes and has the form:
class derived-class: access-specifier base-class
C++ Single Inheritance
Single inheritance is defined as the inheritance in which a derived class is inherited from the only one base class.
How to make a Private Member Inheritable:
The private member is not inheritable. If we modify the visibility mode by making it public, but this takes away the advantage of data hiding.
C++ introduces a third visibility modifier, i.e., protected. The member which is declared as protected will be accessible to all the member functions within the class as well as the class immediately derived from it.
Visibility modes can be classified into three categories:
• Public: When the member is declared as public, it is accessible to all the functions of the program.
• Private: When the member is declared as private, it is accessible within the class only.
• Protected: When the member is declared as protected, it is accessible within its own class as well as the class immediately derived from it.
C++ Multilevel Inheritance
Multilevel inheritance is a process of deriving a class from another derived class. When one class inherits another class which is further inherited by another class, it is known as multi level inheritance in C++. Inheritance is transitive so the last derived class acquires all the members of all its base classes.
C++ Multiple Inheritance
Multiple inheritance is the process of deriving a new class that inherits the attributes from two or more classes.
Ambiquity Resolution in Inheritance
Ambiguity can be occurred in using the multiple inheritance when a function with the same name occurs in more than one base class.
C++ Hybrid Inheritance
Hybrid inheritance is a combination of more than one type of inheritance.
C++ Hierarchical Inheritance
Hierarchical inheritance is defined as the process of deriving more than one class from a base class.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/* Inheritance is one of the key features of Object-oriented programming in C++. It allows us to create a new class (derived class) from an existing class (base class). */
#include <iostream>
using namespace std;
// Base class Shape
class Shape {
public:
void setWidth(int w) {
width = w;
}
void setHeight(int h) {
height = h;
}
protected:
int width;
int height;
};
// Base class PaintCost
class PaintCost {
public:
int getCost(int area) {
return area * 70;
}
};
// Derived class
class Rectangle: public Shape, public PaintCost {
public:
int getArea() {
return (width * height);
}
};
int main(void) {
Rectangle Rect;
int area;
Rect.setWidth(5);
Rect.setHeight(7);
area = Rect.getArea();
// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;
// Print the total cost of painting
cout << "Total paint cost: $" << Rect.getCost(area) << endl;
return 0;
}
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* using #include directive in C language */
#include <stdio.h>
int main()
{
/*
* C standard library printf function
* defined in the stdio.h header file
*/
printf("I love you Clementine");
printf("I love you so much");
printf("HappyCodings");
return 0;
}