Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Overloading Equality and Inequality Operators

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Overloading Equality and Inequality Operators */ #include <iostream> using namespace std; class CDate { private: int m_nDay; int m_nMonth; int m_nYear; void AddDays (int nDaysToAdd); void AddMonths (int nMonthsToAdd); void AddYears (int m_nYearsToAdd); public: CDate (int nDay, int nMonth, int nYear) : m_nDay (nDay), m_nMonth (nMonth), m_nYear (nYear) {}; void DisplayDate () { cout << m_nDay << " / " << m_nMonth << " / " << m_nYear << endl; } // integer conversion operator operator int(); // equality operator that helps with: if (mDate1 == mDate2)... bool operator == (const CDate& mDateObj); // overloaded equality operator that helps with: if (mDate == nInteger) bool operator == (int nDateNumber); // inequality operator bool operator != (const CDate& mDateObj); // overloaded inequality operator for integer types bool operator != (int nDateNumber); }; CDate::operator int() { return ((m_nYear * 10000) + (m_nMonth * 100) + m_nDay); } // equality operator that helps with if (mDate1 == mDate2)... bool CDate::operator == (const CDate& mDateObj) { return ( (mDateObj.m_nYear == m_nYear) && (mDateObj.m_nMonth == m_nMonth) && (mDateObj.m_nDay == m_nDay) ); } bool CDate::operator == (int nDateNumber) { return nDateNumber == (int)*this; } // inequality operator bool CDate::operator != (const CDate& mDateObj) { return !(this->operator== (mDateObj)); } bool CDate::operator != (int nDateNumber) { return !(this->operator == (nDateNumber)); } void CDate::AddDays (int nDaysToAdd) { m_nDay += nDaysToAdd; if (m_nDay > 30) { AddMonths (m_nDay / 30); m_nDay %= 30; // rollover 30th -> 1st } } void CDate::AddMonths (int nMonthsToAdd) { m_nMonth += nMonthsToAdd; if (m_nMonth > 12) { AddYears (m_nMonth / 12); m_nMonth %= 12; // rollover dec -> jan } } void CDate::AddYears (int m_nYearsToAdd) { m_nYear += m_nYearsToAdd; } int main () { CDate mDate1 (25, 6, 2008); mDate1.DisplayDate (); CDate mDate2 (23, 5, 2009); mDate2.DisplayDate (); if (mDate2 != mDate1) cout << "The two dates are not equal... As expected!" << endl; CDate mDate3 (23, 5, 2009); mDate3.DisplayDate (); if (mDate3 == mDate2) cout << "mDate3 and mDate2 are evaluated as equals" << endl; // Get the integer equivalent of mDate3 using operator int() int nIntegerDate3 = mDate3; cout << nIntegerDate3<< endl; // Use overloaded operator== (for int comparison) if (mDate3 == nIntegerDate3) cout << "The integer and mDate3 are equivalent" << endl; // Use overloaded operator != that accepts integers if (mDate1 != nIntegerDate3) cout << "The mDate1 is inequal to mDate3"; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
Assignment Operators in C++
As the name already suggests, these operators help in assigning values to variables. These operators help us in allocating a particular value to the operands. The main simple assignment operator is '='. We have to be sure that both the left and right sides of the operator must have the same data type. We have different levels of operators. Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Assignment operators are used to assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error. */ // C++ program to demonstrate working of Assignment operators #include <iostream> using namespace std; int main() { // Assigning value 10 to a // using "=" operator int a = 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by adding 10 to a // using "+=" operator a += 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by subtracting 10 from a // using "-=" operator a -= 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by multiplying 10 to a // using "*=" operator a *= 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by dividing 10 from a // using "/=" operator a /= 10; cout << "Value of a is "<<a<<"\n"; return 0; }
Function Call Operator() Overloading in C++
n C++, we can change the way operators work for user-defined types like objects and structures. This is known as operator overloading. Suppose we have created three objects c1, c2 and result from a class named Complex that represents complex numbers. Since operator overloading allows us to change how operators work, we can redefine how the + operator works and use it to add the complex numbers of c1 and c2 by writing the following code:
result = c1 + c2;
instead of something like
result = c1.addNumbers(c2);
This makes our code intuitive and easy to understand. We cannot use operator overloading for fundamental data types like int, float, char and so on.
Syntax for C++ Operator Overloading
class className { ... .. ... public returnType operator symbol (arguments) { ... .. ... } ... .. ... };
To overload an operator, we use a special operator function. We define the function inside the class or structure whose objects/variables we want the overloaded operator to work with.
returnType
is the return type of the function.
operator
is a keyword.
symbol
is the operator we want to overload. Like: +, <, -, ++, etc.
arguments
is the arguments passed to the function. Unary operators operate on only one operand. The increment operator ++ and decrement operator -- are examples of unary operators.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* You can redefine or overload most of the built-in operators available in C++. Thus, a programmer can use operators with user-defined types as well. Overloaded operators are functions with special names: the keyword "operator" followed by the symbol for the operator being defined. Like any other function, an overloaded operator has a return type and a parameter list. */ // Overload ++ when used as prefix #include <iostream> using namespace std; class Count { private: int value; public: // Constructor to initialize count to 5 Count() : value(5) {} // Overload ++ when used as prefix void operator ++ () { ++value; } void display() { cout << "Count: " << value << endl; } }; int main() { Count count1; // Call the "void operator ++ ()" function ++count1; count1.display(); return 0; }
Logical Operators in C++
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable. We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0. Assume variable A holds 1 and variable B holds 0:
&&
Called Logical AND operator. If both the operands are non-zero, then condition becomes true. (A && B) is false. The logical AND operator && returns true - if and only if all the operands are true. false - if one or more operands are false.
||
Called Logical OR Operator. If any of the two operands is non-zero, then condition becomes true. (A || B) is true. The logical OR operator || returns true - if one or more of the operands are true. false - if and only if all the operands are false.
!
Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true, then Logical NOT operator will make false. !(A && B) is true. The logical NOT operator ! is a unary operator i.e. it takes only one operand. It returns true when the operand is false, and false when the operand is true.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* The operator ! is the C++ operator for the Boolean operation NOT. It has only one operand, to its right, and inverts it, producing false if its operand is true, and true if its operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. The logical operators && and || are used when evaluating two expressions to obtain a single relational result. The operator && corresponds to the Boolean logical operation AND, which yields true if both its operands are true, and false otherwise. */ #include <iostream> using namespace std; main() { int a = 5; int b = 20; int c ; if(a && b) { cout << "Line 1 - Condition is true"<< endl ; } if(a || b) { cout << "Line 2 - Condition is true"<< endl ; } /* Let's change the values of a and b */ a = 0; b = 10; if(a && b) { cout << "Line 3 - Condition is true"<< endl ; } else { cout << "Line 4 - Condition is not true"<< endl ; } if(!(a && b)) { cout << "Line 5 - Condition is true"<< endl ; } return 0; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Constructors in C++ Language
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
Syntax for Default Constructor in C++
class_name(parameter1, parameter2, ...) { // constructor Definition }
• Parameterized Constructor: In C++, a constructor with parameters is known as a parameterized constructor. This is the preferred method to initialize member data. These are the constructors with parameter. Using this Constructor you can provide different values to data members of different objects, by passing the appropriate values as argument.
Syntax for Parameterized Constructor in C++
class class_name { public: class_name(variables) //Parameterized constructor declared. { } };
• Copy Constructors: These are special type of Constructors which takes an object as argument, and is used to copy values of data members of one object into other object.
Syntax for Copy Constructors in C++
classname (const classname &obj) { // body of constructor }
The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously. The copy constructor is used to - • Initialize one object from another of the same type. • Copy an object to pass it as an argument to a function. • Copy an object to return it from a function. If a copy constructor is not defined in a class, the compiler itself defines one.If the class has pointer variables and has some dynamic memory allocations, then it is a must to have a copy constructor. The most common form of copy constructor is shown here.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* A constructor is a special type of member function that is called automatically when an object is created. In C++, a constructor has the same name as that of the class and it does not have a return type. */ #include <iostream> using namespace std; // declare a class class Wall { private: double length; double height; public: // initialize variables with parameterized constructor Wall(double len, double hgt) { length = len; height = hgt; } // copy constructor with a Wall object as parameter // copies data of the obj parameter Wall(Wall &obj) { length = obj.length; height = obj.height; } double calculateArea() { return length * height; } }; int main() { // create an object of Wall class Wall wall1(10.5, 8.6); // copy contents of wall1 to wall2 Wall wall2 = wall1; // print areas of wall1 and wall2 cout << "Area of Wall 1: " << wall1.calculateArea() << endl; cout << "Area of Wall 2: " << wall2.calculateArea(); return 0; }
this Pointer in C++
Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a this pointer. In C++ programming, this is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++: • It can be used to pass current object as a parameter to another method. • It can be used to refer current class instance variable. • It can be used to declare indexers. To understand 'this' pointer, it is important to know how objects look at functions and data members of a class. • Each object gets its own copy of the data member. • All-access the same function definition as present in the code segment. Meaning each object gets its own copy of data members and all objects share a single copy of member functions. Then now question is that if only one copy of each member function exists and is used by multiple objects, how are the proper data members are accessed and updated? The compiler supplies an implicit pointer along with the names of the functions as 'this'. The 'this' pointer is passed as a hidden argument to all nonstatic member function calls and is available as a local variable within the body of all nonstatic functions. 'this' pointer is not available in static member functions as static member functions can be called without any object (with class name). For a class X, the type of this pointer is 'X* '. Also, if a member function of X is declared as const, then the type of this pointer is 'const X *'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* The this pointer holds the address of current object, in simple words you can say that this pointer points to the current object of the class. The keyword this identifies a special type of pointer. Suppose that you create an object named x of class A, and class A has a nonstatic member function f(). If you call the function x.f(), the keyword this in the body of f() stores the address of x. You cannot declare the this pointer or make assignments to it. A static member function does not have a this pointer.*/ #include <iostream> using namespace std; class Box { public: // Constructor definition Box(double l = 2.0, double b = 2.0, double h = 2.0) { cout <<"Constructor called." << endl; length = l; breadth = b; height = h; } double Volume() { return length * breadth * height; } int compare(Box box) { return this->Volume() > box.Volume(); } private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; int main(void) { Box Box1(3.3, 1.2, 1.5); // Declare box1 Box Box2(8.5, 6.0, 2.0); // Declare box2 if(Box1.compare(Box2)) { cout << "Box2 is smaller than Box1" <<endl; } else { cout << "Box2 is equal to or larger than Box1" <<endl; } return 0; }
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code. A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name { // code declarations }
To call the namespace-enabled version of either function or variable, prepend (::) the namespace name as follows:
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files. So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name { // code declarations }
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 { // code declarations namespace namespace_name2 { // code declarations } }
• Namespace is a feature added in C++ and not present in C. • A namespace is a declarative region that provides a scope to the identifiers (names of the types, function, variables etc) inside it. • Multiple namespace blocks with the same name are allowed. All declarations within those blocks are declared in the named scope. • Namespace declarations appear only at global scope. • Namespace declarations can be nested within another namespace. • Namespace declarations don't have access specifiers. (Public or private) • No need to give semicolon after the closing brace of definition of namespace. • We can split the definition of namespace over several units.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* namespaces in C++ language */ // A C++ code to demonstrate that we can define // methods outside namespace. #include <iostream> using namespace std; // Creating a namespace namespace ns { void display(); class happy { public: void display(); }; } // Defining methods of namespace void ns::happy::display() { cout << "ns::happy::display()\n"; } void ns::display() { cout << "ns::display()\n"; } // Driver code int main() { ns::happy obj; ns::display(); obj.display(); return 0; }
Classes and Objects in C++ Language
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
C++ Class Definitions
When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object. A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the keyword class as follows:
class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box };
The keyword public determines the access attributes of the members of the class that follows it. A public member can be accessed from outside the class anywhere within the scope of the class object. You can also specify the members of a class as private or protected which we will discuss in a sub-section.
Define C++ Objects
A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of basic types. Following statements declare two objects of class Box:
Box Box1; // Declare Box1 of type Box Box Box2; // Declare Box2 of type Box
Both of the objects Box1 and Box2 will have their own copy of data members.
Accessing the Data Members
The public data members of objects of a class can be accessed using the direct member access operator (.). It is important to note that private and protected members can not be accessed directly using direct member access operator (.).
Classes and Objects in Detail
There are further interesting concepts related to C++ Classes and Objects which we will discuss in various sub-sections listed below: • Class Member Functions: A member function of a class is a function that has its definition or its prototype within the class definition like any other variable. • Class Access Modifiers: A class member can be defined as public, private or protected. By default members would be assumed as private. • Constructor & Destructor: A class constructor is a special function in a class that is called when a new object of the class is created. A destructor is also a special function which is called when created object is deleted. • Copy Constructor: The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously. • Friend Functions: A friend function is permitted full access to private and protected members of a class. • Inline Functions: With an inline function, the compiler tries to expand the code in the body of the function in place of a call to the function. • this Pointer: Every object has a special pointer this which points to the object itself. • Pointer to C++ Classes: A pointer to a class is done exactly the same way a pointer to a structure is. In fact a class is really just a structure with functions in it. • Static Members of a Class: Both data members and function members of a class can be declared as static.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* using public and private in C++ Class */ // Program to illustrate the working of // public and private in C++ Class #include <iostream> using namespace std; class Room { private: double length; double breadth; double height; public: // function to initialize private variables void initData(double len, double brth, double hgt) { length = len; breadth = brth; height = hgt; } double calculateArea() { return length * breadth; } double calculateVolume() { return length * breadth * height; } }; int main() { // create object of Room class Room room1; // pass the values of private variables as arguments room1.initData(42.5, 30.8, 19.2); cout << "Area of Room = " << room1.calculateArea() << endl; cout << "Volume of Room = " << room1.calculateVolume() << endl; return 0; }
If Else Statement in C++
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement,
Syntax for If Statement in C++
if (condition) { // body of if statement }
The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Syntax for If...Else Statement
if (condition) { // block of code if condition is true } else { // block of code if condition is false }
The if..else statement evaluates the condition inside the parenthesis. If the condition evaluates true, the code inside the body of if is executed, the code inside the body of else is skipped from execution. If the condition evaluates false, the code inside the body of else is executed, the code inside the body of if is skipped from execution. The if...else statement is used to execute a block of code among two alternatives. However, if we need to make a choice between more than two alternatives, we use the if...else if...else statement.
Syntax for If...Else...Else If Statement in C++
if (condition1) { // code block 1 } else if (condition2){ // code block 2 } else { // code block 3 }
• If condition1 evaluates to true, the code block 1 is executed. • If condition1 evaluates to false, then condition2 is evaluated. • If condition2 is true, the code block 2 is executed. • If condition2 is false, the code block 3 is executed. There can be more than one else if statement but only one if and else statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax for If Else If Ladder in C++
if (condition) statement 1; else if (condition) statement 2; . . else statement;
Working of the if-else-if ladder: 1. Control falls into the if block. 2. The flow jumps to Condition 1. 3. Condition is tested. If Condition yields true, goto Step 4. If Condition yields false, goto Step 5. 4. The present block is executed. Goto Step 7. 5. The flow jumps to Condition 2. If Condition yields true, goto step 4. If Condition yields false, goto Step 6. 6. The flow jumps to Condition 3. If Condition yields true, goto step 4. If Condition yields false, execute else block. Goto Step 7. 7. Exits the if-else-if ladder. • The if else ladder statement in C++ programming language is used to check set of conditions in sequence. • This is useful when we want to selectively executes one code block(out of many) based on certain conditions. • It allows us to check for multiple condition expressions and execute different code blocks for more than two conditions. • A condition expression is tested only when all previous if conditions in if-else ladder is false. • If any of the conditional expression evaluates to true, then it will execute the corresponding code block and exits whole if-else ladder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* If Else Statement in C++ Language */ #include <iostream> using namespace std; int main () { // local variable declaration: int a = 100; // check the boolean condition if( a < 20 ) { // if condition is true then print the following cout << "a is less than 20;" << endl; } else { // if condition is false then print the following cout << "a is not less than 20;" << endl; } cout << "value of a is : " << a << endl; return 0; }
Pointers in C++ Language
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
Syntax for Pointers in C++
int *ip; // pointer to an integer double *dp; // pointer to a double float *fp; // pointer to a float char *ch // pointer to character
• Pointer reduces the code and improves the performance, it is used to retrieving strings, trees etc. and used with arrays, structures and functions. • We can return multiple values from function using pointer. • It makes you able to access any memory location in the computer's memory. Dynamic memory allocation: In c language, we can dynamically allocate memory using malloc() and calloc() functions where pointer is used. Arrays, Functions and Structures: Pointers in C language are widely used in arrays, functions and structures. It reduces the code and improves the performance. & (ampersand sign): Address operator - Determine the address of a variable. * (asterisk sign): Indirection operator - Access the value of an address. The pointer in C++ language can be declared using * (asterisk symbol).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* pointer is a variable in C++ that holds the address of another variable */ #include <iostream> using namespace std; int main () { int var = 20; // actual variable declaration. int *ip; // pointer variable ip = &var; // store address of var in pointer variable cout << "Value of var variable: "; cout << var << endl; // print the address stored in ip pointer variable cout << "Address stored in ip variable: "; cout << ip << endl; // access the value at the address available in pointer cout << "Value of *ip variable: "; cout << *ip << endl; return 0; }


Add Edge to connect "v" and "w". A recursive function to print BFS starting from s. Returns reverse ('or transpose') of this graph. Check if graph is connected. Print graph is connected.
For example 6 is Perfect Number since divisor of 6 are 1, 2 and 3. Sum of its divisor is 1 + 2+ 3 =6 and 28 is also a 'Perfect Number' since 1+ 2 + 4 + 7 + 14= 28. Other 'Perfect Numbers': 496
In graph theory, an "edge coloring" of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color. Any "2 edges" connected to same