Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Code Snippets Code Examples

Remove(delete) all elements in the vector

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Remove(delete) all elements in the vector */ #include <iostream> using std::cout; using std::endl; #include <vector> // vector class-template definition #include <algorithm> // copy algorithm #include <iterator> // ostream_iterator iterator #include <stdexcept> // out_of_range exception int main() { int array[ 6 ] = { 1, 2, 3, 4, 5, 6 }; std::vector< int > integers( array, array + 6 ); std::ostream_iterator< int > output( cout, " " ); integers.push_back( 2 ); integers.push_back( 3 ); integers.push_back( 4 ); cout << "Vector integers contains: "; std::copy( integers.begin(), integers.end(), output ); // erase remaining elements integers.erase( integers.begin(), integers.end() ); cout << "\nAfter erasing all elements, vector integers " << ( integers.empty() ? "is" : "is not" ) << " empty"; return 0; } /* Vector integers contains: 1 2 3 4 5 6 2 3 4 After erasing all elements, vector integers is empty */
Vectors in C++ Language
In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program.
Declaration for Vectors in C++
std::vector<T> vector_name;
The type parameter <T> specifies the type of the vector. It can be any primitive data type such as int, char, float, etc.
Initialization for Vectors in C++
// Vector initialization method 1 // Initializer list vector<int> vector1 = {1, 2, 3, 4, 5};
We are initializing the vector by providing values directly to the vector. vector1 is initialized with values 1, 2, 3, 4, 5.
// Vector initialization method 2 vector<int> vector3(5, 12);
Here, 5 is the size of the vector and 8 is the value. This code creates an int vector with size 5 and initializes the vector with the value of 8. So, the vector is equivalent to
vector<int> vector2 = {8, 8, 8, 8, 8};
The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index. Change Vector Element: We can change an element of the vector using the same at() function. Delete Elements from C++ Vectors: To delete a single element from a vector, we use the pop_back() function. In C++, the vector header file provides various functions that can be used to perform different operations on a vector. • size(): returns the number of elements present in the vector. • clear(): removes all the elements of the vector. • front(): returns the first element of the vector. • back(): returns the last element of the vector. • empty(): returns 1 (true) if the vector is empty. • capacity(): check the overall size of a vector. Vector iterators are used to point to the memory address of a vector element. In some ways, they act like pointers.
Syntax for Vector Iterators in C++
vector<T>::iterator iteratorName;
We can initialize vector iterators using the begin() and end() functions. The begin() function returns an iterator that points to the first element of the vector. The end() function points to the theoretical element that comes after the final element of the vector.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Vectors in C++ language */ // C++ program to illustrate the capacity function in vector #include <iostream> #include <vector> using namespace std; int main() { vector<int> myvector; for (int i = 1; i <= 5; i++) myvector.push_back(i); cout << "Size : " << myvector.size(); cout << "\nCapacity : " << myvector.capacity(); cout << "\nMax_Size : " << myvector.max_size(); // resizes the vector size to 4 myvector.resize(4); // prints the vector size after resize() cout << "\nSize : " << myvector.size(); // checks if the vector is empty or not if (myvector.empty() == false) cout << "\nVector is not empty"; else cout << "\nVector is empty"; // Shrinks the vector myvector.shrink_to_fit(); cout << "\nVector elements are: "; for (auto it = myvector.begin(); it != myvector.end(); it++) cout << *it << " "; return 0; }
Vector Library begin() Function in C++
Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector.
Syntax for Vector begin() Function in C++
#include <vector> iterator begin() noexcept; const_iterator begin() const noexcept;
This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively).
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns a random access iterator pointing to the first element of the vector by std::vector::begin() function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }
Stdexcept Library out_of_range in C++
This class defines the type of objects thrown as exceptions to report an out-of-range error. Defines a type of object to be thrown as exception. It reports errors that are consequence of attempt to access elements out of defined range. It may be thrown by the member functions of std::bitset and std::basic_string, by std::stoi and std::stod families of functions, and by the bounds-checked member access functions (e.g. std::vector::at and std::map::at). It is a standard exception that can be thrown by programs. Some components of the standard library, such as vector, deque, string and bitset also throw exceptions of this type to signal arguments out of range.
Syntax for out_of_range in C++
#include <stdexcept> class out_of_range;
The function does not accept any parameter. The function does not return any type.
Members
constructor: The string passed as what_arg has the same content as the value returned by member what. The class inherits the what member function from logic_error.
Exception safety
Strong guarantee: if the constructor throws an exception, there are no side effects.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* out_of_range() function is an out-of-range exception and this class defines the type of objects thrown as exceptions to report an out-of-range error. */ /* Out-of-range exception by out_of_range() function code example */ #include <iostream> // std::cerr #include <stdexcept> // std::out_of_range #include <vector> // std::vector int main (void) { std::vector<int> myvector(10); try { myvector.at(20)=100; // vector::at throws an out-of-range } catch (const std::out_of_range& oor) { std::cerr << "Out of Range error: " << oor.what() << '\n'; } return 0; }
Algorithm Library copy() Function in C++
copy() function is used to copy items from one iterator to another iterator with a specific range. We can define the start and end position of the source and it will copy all items in this rage to a different destination. To use copy() function, we need to include <bits/stdc+.h> or header file. It copies all the elements pointed by first and last. first element is included in the output but last is not. output is the start position of the final result iterator. It returns one iterator to the end of the destination range where elements have been copied.
Syntax for copy() Function in C++
template <class InputIterator, class OutputIterator> OutputIterator copy (InputIterator first, InputIterator last, OutputIterator result);
first
It is an input iterator to the first element of the range, where the element itself is included in the range.
last
It is an input iterator to the last element of the range, where the element itself is not included in the range. Input iterators to the initial and final positions in a sequence to be copied. The range used is [first,last), which contains all the elements between first and last, including the element pointed by first but not the element pointed by last.
result
It is an output iterator to the first element of the new container in which the elements are copied. Output iterator to the initial position in the destination sequence. This shall not point to any element in the range [first,last). Function returns an iterator to the end of the destination range where elements have been copied.
Complexity
Linear in the distance between first and last: Performs an assignment operation for each element in the range.
Data races
The objects in the range [first,last) are accessed (each object is accessed exactly once). The objects in the range between result and the returned value are modified (each object is modified exactly once).
Exceptions
Throws if either an element assignment or an operation on iterators throws. Note that invalid arguments cause undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* copying the array elements to the vector by copy() function code example */ // C++ STL program to demonstrate use of std::copy() function #include <iostream> #include <algorithm> #include <vector> using namespace std; int main() { //declaring & initializing an int array int arr[] = { 10, 20, 30, 40, 50 }; //vector declaration vector<int> v1(5); //copying array elements to the vector copy(arr, arr + 5, v1.begin()); //printing array cout << "arr: "; for (int x : arr) cout << x << " "; cout << endl; //printing vector cout << "v1: "; for (int x : v1) cout << x << " "; cout << endl; return 0; }
Iterator Library ostream_iterator in C++
Ostream iterators are output iterators that write sequentially to an output stream (such as cout). They are constructed from a basic_ostream object, to which they become associated, so that whenever an assignment operator (=) is used on the ostream_iterator (dereferenced or not) it inserts a new element into the stream. Optionally, a delimiter can be specified on construction. This delimiter is written to the stream after each element is inserted.
Syntax for Iterator ostream_iterator in C++
#include <iterator> template <class T, class charT=char, class traits=char_traits<charT> > class ostream_iterator;
T
Element type for the iterator: The type of elements inserted into the stream
charT
First template parameter of the associated basic_ostream object: The type of elements the stream handles (char for ostream).
traits
Second template parameter of the associated basic_ostream: Character traits for the elements the stream handles. The default template arguments correspond to an instantiation that uses an ostream object as associated stream.
Member types
Member types & definition in istream_iterator ostream_type: basic_ostream<charT,traits> --- Type of the associated output stream iterator_category: output_iterator_tag --- Input iterator value_type: void char_type: charT --- Type of the characters handled by the associated stream traits_type: traits --- Character traits for associated stream difference_type: void pointer: void reference: void
Member functions
• (constructor) Construct ostream iterator (public member function ) • operator* Dereference iterator (public member function ) • operator++ Increment iterator (public member function ) • operator= Assignment operator (public member function )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* C++ ostream_iterator is a special output iterator that write sequentially to an output stream. */ /* ostream_iterator class template - Output iterator to write items to an ostream */ /* C++ code example to illustrate read a bunch of strings from a file sort them lexicographically and print them to output stream */ #include <algorithm> #include <fstream> #include <iostream> #include <iterator> #include <string> #include <vector> using namespace std; int main() { // Define a vector to store the strings received from input vector<string> strings_v; // Define the filestream object used to read data from file ifstream fin("input_file.txt"); // Get input stream and end of stream iterators istream_iterator<string> fin_it(fin); istream_iterator<string> eos; // Get output stream iterators ostream_iterator<string> cout_it(cout, " "); // Copy elements from input to vector using copy function copy(fin_it, eos, back_inserter(strings_v)); // Sort the vector sort(strings_v.begin(), strings_v.end()); // Copy elements from vector to output copy(strings_v.begin(), strings_v.end(), cout_it); return 0; }
Vector Library empty() Function in C++
Test whether vector is empty. Returns whether the vector is empty (i.e. whether its size is 0). This function does not modify the container in any way. To clear the content of a vector, see vector::clear. Vectors are same as dynamic arrays with the ability to resize itself automatically when an element is inserted or deleted, with their storage being handled automatically by the container. vector::empty() is a library function of "vector" header, it is used to check whether a given vector is an empty vector or not, it returns a true if the vector size is 0, otherwise it returns false.
Syntax for Vector empty() Function in C++
#include <vector> bool empty() const noexcept;
This function does not accept any parameter. Function returns true if the container size is 0, false otherwise.
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed. No contained elements are accessed: concurrently accessing or modifying them is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* check whether the vector is empty or not by vector::empty function code example. */ //C++ STL program to demonstrate example of vector::empty() function #include <iostream> #include <vector> using namespace std; int main() { vector<int> v1; //printing the size of the vector cout << "Total number of elements: " << v1.size() << endl; //checking whether vector is empty or not if (v1.empty()) cout << "vector is empty." << endl; else cout << "vector is not empty." << endl; //pushing elements v1.push_back(10); v1.push_back(20); v1.push_back(30); v1.push_back(40); v1.push_back(50); //printing the size of the vector cout << "Total number of elements: " << v1.size() << endl; //checking whether vector is empty or not if (v1.empty()) cout << "vector is empty." << endl; else cout << "vector is not empty." << endl; return 0; }
Vector Library erase() Function in C++
Erase elements. Removes from the vector either a single element (position) or a range of elements ([first,last)). This effectively reduces the container size by the number of elements removed, which are destroyed. Because vectors use an array as their underlying storage, erasing elements in positions other than the vector end causes the container to relocate all the elements after the segment erased to their new positions. This is generally an inefficient operation compared to the one performed for the same operation by other kinds of sequence containers (such as list or forward_list).
Syntax for Vector erase() Function in C++
#include <vector> iterator erase (const_iterator position); iterator erase (const_iterator first, const_iterator last);
position
Iterator pointing to a single element to be removed from the vector. Member types iterator and const_iterator are random access iterator types that point to elements.
first, last
Iterators specifying a range within the vector] to be removed: [first,last). i.e., the range includes all the elements between first and last, including the element pointed by first but not the one pointed by last. Member types iterator and const_iterator are random access iterator types that point to elements. Function returns an iterator pointing to the new location of the element that followed the last element erased by the function call. This is the container end if the operation erased the last element in the sequence. Member type iterator is a random access iterator type that points to elements.
Complexity
Linear on the number of elements erased (destructions) plus the number of elements after the last element deleted (moving).
Iterator validity
Iterators, pointers and references pointing to position (or first) and beyond are invalidated, with all iterators, pointers and references to elements before position (or first) are guaranteed to keep referring to the same elements they were referring to before the call.
Data races
The container is modified. None of the elements before position (or first) is accessed, and concurrently accessing or modifying them is safe.
Exception safety
If the removed elements include the last element in the container, no exceptions are thrown (no-throw guarantee). Otherwise, the container is guaranteed to end in a valid state (basic guarantee). An invalid position or range causes undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* removes an element at specific index, or removes a range of elements from specific start to end indices by vector erase() function code example. */ //C++ STL program to demonstrate example of vector::erase() function #include <iostream> #include <vector> using namespace std; int main() { //vector declaration vector<int> v1{ 10, 20, 30, 40, 50 }; //printing elements cout << "v1: "; for (int x : v1) cout << x << " "; cout << endl; //removing one element v1.erase(v1.begin() + 2); //removes 2nd index element //printing elements after remove one element cout << "After removing one element..." << endl; cout << "v1: "; for (int x : v1) cout << x << " "; cout << endl; //removing a range of elements v1.erase(v1.begin() + 1, v1.begin() + 3); //removes 1,2 index elements //printing elements after remove one element cout << "After removing a range of elements..." << endl; cout << "v1: "; for (int x : v1) cout << x << " "; cout << endl; return 0; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Iterators in C++ Language
Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result.
Syntax for Iterators in C++
<ContainerType> :: iterator; <ContainerType> :: const_iterator;
• Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used. • Iterators provide a generic approach to navigate through the elements of a container. Operator (*) : The '*' operator returns the element of the current position pointed by the iterator. Operator (++) : The '++' operator increments the iterator by one. Therefore, an iterator points to the next element of the container. Operator (==) and Operator (!=) : Both these operators determine whether the two iterators point to the same position or not. Operator (=) : The '=' operator assigns the iterator. Iterators can be smart pointers which allow to iterate over the complex data structures. A Container provides its iterator type. Therefore, we can say that the iterators have the common interface with different container type. The container classes provide two basic member functions that allow to iterate or move through the elements of a container: begin(): The begin() function returns an iterator pointing to the first element of the container. end(): The end() function returns an iterator pointing to the past-the-last element of the container. Input Iterator: An input iterator is an iterator used to access the elements from the container, but it does not modify the value of a container. Operators used for an input iterator are: Increment operator(++), Equal operator(==), Not equal operator(!=), Dereference operator(*). Output Iterator: An output iterator is an iterator used to modify the value of a container, but it does not read the value from a container. Therefore, we can say that an output iterator is a write-only iterator. Operators used for an output iterator are: Increment operator(++), Assignment operator(=). Forward Iterator: A forward iterator is an iterator used to read and write to a container. It is a multi-pass iterator. Operators used for a Forward iterator are: Increment operator(++), Assignment operator(=), Equal operator(=), Not equal operator(!=). Bidirectional iterator: A bidirectional iterator is an iterator supports all the features of a forward iterator plus it adds one more feature, i.e., decrement operator(--). We can move backward by decrementing an iterator. Operators used for a Bidirectional iterator are: Increment operator(++), Assignment operator(=), Equal operator(=), Not equal operator(!=), Decrement operator(--). Random Access Iterator: A Random Access iterator is an iterator provides random access of an element at an arbitrary location. It has all the features of a bidirectional iterator plus it adds one more feature, i.e., pointer addition and pointer subtraction to provide random access to an element. Following are the disadvantages of an iterator: • If we want to move from one data structure to another at the same time, iterators won't work. • If we want to update the structure which is being iterated, an iterator won?t allow us to do because of the way it stores the position. • If we want to backtrack while processing through a list, the iterator will not work in this case. Following are the advantages of an iterator: • Ease in programming: It is convenient to use iterators rather than using a subscript operator[] to access the elements of a container. If we use subscript operator[] to access the elements, then we need to keep the track of the number of elements added at the runtime, but this would not happen in the case of an iterator. • Code Reusability: A code can be reused if we use iterators. In the above example, if we replace vector with the list, and then the subscript operator[] would not work to access the elements as the list does not support the random access. However, we use iterators to access the elements, then we can also access the list elements. • Dynamic Processing: C++ iterators provide the facility to add or delete the data dynamically.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Iterators in C++ language */ // C++ code to demonstrate the working of next() and prev() #include<iostream> #include<iterator> // for iterators #include<vector> // for vectors using namespace std; int main() { vector<int> ar = { 1, 2, 3, 4, 5 }; // Declaring iterators to a vector vector<int>::iterator ptr = ar.begin(); vector<int>::iterator ftr = ar.end(); // Using next() to return new iterator // points to 4 auto it = next(ptr, 3); // Using prev() to return new iterator // points to 3 auto it1 = prev(ftr, 3); // Displaying iterator position cout << "The position of new iterator using next() is : "; cout << *it << " "; cout << endl; // Displaying iterator position cout << "The position of new iterator using prev() is : "; cout << *it1 << " "; cout << endl; return 0; }
What is an Array in C++ Language
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations. By using the array, we can access the elements easily. Only a few lines of code are required to access the elements of the array.
Properties of Array
The array contains the following properties. • Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes. • Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest memory location. • Elements of the array can be randomly accessed since we can calculate the address of each element of the array with the given base address and the size of the data element.
Advantage of C++ Array
• 1) Code Optimization: Less code to the access the data. • 2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily. • 3) Ease of sorting: To sort the elements of the array, we need a few lines of code only. • 4) Random Access: We can access any element randomly using the array.
Disadvantage of C++ Array
• 1) Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike a linked list, an array in C++ is not dynamic. • 2) Insertion and deletion of elements can be costly since the elements are needed to be managed in accordance with the new memory allocation.
Declaration of C++ Array
To declare an array in C++, a programmer specifies the type of the elements and the number of elements required by an array as follows
type arrayName [ arraySize ];
This is called a single-dimensional array. The arraySize must be an integer constant greater than zero and type can be any valid C++ data type. For example, to declare a 10-element array called balance of type double, use this statement
double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.
Initializing Arrays
You can initialize an array in C++ either one by one or using a single statement as follows
double balance[5] = {850, 3.0, 7.4, 7.0, 88};
The number of values between braces { } cannot be larger than the number of elements that we declare for the array between square brackets [ ]. If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write
double balance[] = {850, 3.0, 7.4, 7.0, 88};
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array.
double salary = balance[9];
The above statement will take the 10th element from the array and assign the value to salary variable.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* arrays in C++ Language */ #include <iostream> using namespace std; int main() { // initialize an array without specifying size double numbers[] = {7, 5, 6, 12, 35, 27}; double sum = 0; double count = 0; double average; cout << "The numbers are: "; // print array elements // use of range-based for loop for (const double &n : numbers) { cout << n << " "; // calculate the sum sum += n; // count the no. of array elements ++count; } // print the sum cout << "\nTheir Sum = " << sum << endl; // find the average average = sum / count; cout << "Their Average = " << average << endl; return 0; }
Vector Library push_back() Function in C++
Add element at the end. Adds a new element at the end of the vector, after its current last element. The content of val is copied (or moved) to the new element. This effectively increases the container size by one, which causes an automatic reallocation of the allocated storage space if -and only if- the new vector size surpasses the current vector capacity. push_back() function is used to push elements into a vector from the back. The new value is inserted into the vector at the end, after the current last element and the container size is increased by 1.
Syntax for Vector push_back() Function in C++
#include <vector> void push_back (const value_type& val); void push_back (value_type&& val);
val
Value to be copied (or moved) to the new element. Member type value_type is the type of the elements in the container, defined in vector as an alias of its first template parameter (T). This function does not return any value. If a reallocation happens, the storage is allocated using the container's allocator, which may throw exceptions on failure (for the default allocator, bad_alloc is thrown if the allocation request does not succeed).
Complexity
Constant (amortized time, reallocation may happen). If a reallocation happens, the reallocation is itself up to linear in the entire size.
Iterator validity
If a reallocation happens, all iterators, pointers and references related to the container are invalidated. Otherwise, only the end iterator is invalidated, and all iterators, pointers and references to elements are guaranteed to keep referring to the same elements they were referring to before the call.
Data races
The container is modified. If a reallocation happens, all contained elements are modified. Otherwise, no existing element is accessed, and concurrently accessing or modifying them is safe.
Exception safety
If no reallocations happen, there are no changes in the container in case of exception (strong guarantee). If a reallocation happens, the strong guarantee is also given if the type of the elements is either copyable or no-throw moveable. Otherwise, the container is guaranteed to end in a valid state (basic guarantee). If allocator_traits::construct is not supported with val as argument, it causes undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* vector::push_back() is a library function of "vector" header, it is used to insert/add an element at the end of the vector, it accepts an element of the same type and adds the given element at the end of the vector and increases the size of the vector. */ //C++ STL program code example to demonstrate example of vector::push_back() function #include <iostream> #include <vector> using namespace std; int main() { //vector declaration vector<int> v1; //inserting elements and printing size cout << "size of v1: " << v1.size() << endl; v1.push_back(10); cout << "size of v1: " << v1.size() << endl; v1.push_back(20); v1.push_back(30); v1.push_back(40); v1.push_back(50); cout << "size of v1: " << v1.size() << endl; //printing all elements cout << "elements of vector v1..." << endl; for (int x : v1) cout << x << " "; cout << endl; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
Vector Library end() Function in C++
Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin.
Syntax for Vector end() Function in C++
#include <vector> iterator end() noexcept; const_iterator end() const noexcept;
This function does not accept any parameter. Function returns an iterator to the element past the end of the sequence. If the vector object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator. Member types iterator and const_iterator are random access iterator types (pointing to an element and to a const element, respectively). To use vector, include <vector> header. It does not point to the last element, thus to get the last element we can use vector::end()-1.
Complexity
Constant
Iterator validity
No changes
Data races
The container is accessed (neither the const nor the non-const versions modify the container). No contained elements are accessed by the call, but the iterator returned can be used to access or modify elements. Concurrently accessing or modifying different elements is safe.
Exception safety
No-throw guarantee: this member function never throws exceptions. The copy construction or assignment of the returned iterator is also guaranteed to never throw.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* returns the iterator pointing to the past-the-last element of the vector container by vector::end function code example. */ // CPP program to illustrate implementation of begin() function #include <iostream> #include <string> #include <vector> using namespace std; int main() { // declaration of vector container vector<string> myvector{ "This", "is", "HappyCodings" }; // using begin() to print vector for (auto it = myvector.begin(); it != myvector.end(); ++it) cout << ' ' << *it; return 0; }
Ostream Library put() Function in C++
Put character. Inserts character c into the stream. Internally, the function accesses the output sequence by first constructing a sentry object. Then (if good), it inserts c into its associated stream buffer object as if calling its member function sputc, and finally destroys the sentry object before returning.
Syntax for Ostream put() Function in C++
ostream& put (char c);
c
Character to write Function returns the ostream object (*this). Errors are signaled by modifying the internal state flags: • eofbit - • failbit May be set if the construction of sentry failed. • badbit Either the insertion on the stream failed, or some other error happened (such as when this function catches an exception thrown by an internal operation). When set, the integrity of the stream may have been affected. Multiple flags may be set by a single operation. If the operation sets an internal state flag that was registered with member exceptions, the function throws an exception of member type failure. Through the previous study, we know that C++ programs generally use the cout output stream object of the ostream class and the << output operator to achieve output, and the cout output stream has a corresponding buffer in memory. But sometimes users have special output requirements, such as outputting only one character. In this case, you can use the put() member method provided by this class to achieve.
Data races
Modifies the stream object. Concurrent access to the same stream object may cause data races, except for the standard stream objects (cout, cerr, clog) when these are synchronized with stdio (in this case, no data races are initiated, although no guarantees are given on the order in which characters from multiple threads are inserted).
Exception safety
Basic guarantee: if an exception is thrown, the object is in a valid state. It throws an exception of member type failure if the resulting error state flag is not goodbit and member exceptions was set to throw for that state. Any exception thrown by an internal operation is caught and handled by the function, setting badbit. If badbit was set on the last call to exceptions, the function rethrows the caught exception.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* It is used to inserts character c into the stream.this function accesses the output sequence by first constructing a sentry object. Then (if good), it inserts c into its associated stream buffer object as if calling its member function sputc, and finally destroys the sentry object before returning. */ //C++ code example to Writing data to a file using put() function and ios::out mode #include<iostream> #include<fstream> #include<cstring> using namespace std; int main() { //Creating an output stream to write data to a file ofstream ofstream_ob; //Opens/creates a file named File2.txt ofstream_ob.open("File2.txt", ios::out); char arr[100] = "Hello World. We wish you best in everything. Never give up!"; int length = strlen(arr); char ch; //Reading the char array i.e. a character at a time and writing it to the file for(int i=0; i<length; i++) { ch = arr[i]; ofstream_ob.put(ch); //Writing a character to file, by using put() function } //Closing the output stream ofstream_ob.close(); return 0; }


'Constructor' is automatically called when an object("the Instance of the Lass") create. It is special member function of the class. Object member variable values assigned to another
Program to generate random numbers using Probability Distribution Function. Probability distribution is based on "Probability Density" function. a probability density function (pdf),
To reverse a number in C++, then you have to ask to the user to enter a number. Now, start reversing that number to find its reverse and then display its reverse on the screen. Make a
Enter width of rectangle and enter height of rectangle. Print the "area of rectangle". Print the perimeter of rectangle. Formula: Area of rectangle: height*width. Formula: Perimeter