Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes

C++ Programming Code Examples

C++ > Code Snippets Code Examples

Sort vector of user-defined values

/* Sort vector of user-defined values */ #include <algorithm> #include <iostream> #include <iterator> #include <string> #include <vector> #include <utility> using namespace std; typedef pair<int,string> Pair; inline bool less_than_second( const Pair& b1, const Pair& b2 ){ return b1.second < b2.second; } int main( ) { const char* names[] = { "A","B", "C", "D","E" }; const int values[] = { 18, 20, 26, 30, 41 }; const int num_pairs = sizeof( names ) / sizeof( names[0] ); vector<Pair> pair( num_pairs ); transform( values, values+num_pairs, names,pair.begin(), make_pair<int,string> ); sort( pair.begin(), pair.end() ); vector<Pair>::const_reverse_iterator pair_rend = pair.rend(); for( vector<Pair>::const_reverse_iterator i= pair.rbegin(); i != pair_rend; ++i ) cout << i->first << " - " << i->second; sort( pair.begin(), pair.end(), less_than_second ); vector<Pair>::const_iterator pair_end = pair.end(); for( vector<Pair>::const_iterator i = pair.begin(); i != pair_end; ++i ) cout << i->second << " - $" << i->first << " values\n"; }

Transform range. Applies an operation sequentially to the elements of one (1) or two (2) ranges and stores the result in the range that begins at result. The transform() function in C++ sequentially applies an operation to the elements of an array(s) and then stores the result in another output array. The transform function is used in two forms: Unary operation: The operation is applied to each element in the input range, and the result is stored in the output array. The transform() function takes the pointer to the starting and ending position of a single input array and to the starting position of the output array.

Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.

Sort elements in range. Sorts the elements in the range [first,last) into ascending order. The elements are compared using operator< for the first version, and comp for the second. Equivalent elements are not guaranteed to keep their original relative order (see stable_sort). C++ Algorithm sort() function is used to sort the elements in the range [first, last) into ascending order. The elements are compared using operator < for the first version, and comp for the second version. std::sort() is a built-in function in C++'s Standard Template Library. The function takes in a beginning iterator, an ending iterator, and (by default) sorts the iterable in ascending order. The function can also be used for custom sorting by passing in a comparator function that returns a boolean.

The sizeof() is an operator that evaluates the size of data type, constants, variable. It is a compile-time operator as it returns the size of any variable or a constant at the compilation time. The size, which is calculated by the sizeof() operator, is the amount of RAM occupied in the computer. The sizeof is a keyword, but it is a compile-time operator that determines the size, in bytes, of a variable or data type. The sizeof operator can be used to get the size of classes, structures, unions and any other user defined data type. The data_type can be the data type of the data, variables, constants, unions, structures, or any other user-defined data type.

Check whether eofbit is set. Returns true if the eofbit error state flag is set for the stream. This flag is set by all standard input operations when the End-of-File is reached in the sequence associated with the stream. Note that the value returned by this function depends on the last operation performed on the stream (and not on the next). Operations that attempt to read at the End-of-File fail, and thus both the eofbit and the failbit end up set. This function can be used to check whether the failure is due to reaching the End-of-File or to some other reason.

Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.

Inline function is one of the important feature of C++. So, let's first understand why inline functions are used and what is the purpose of inline function? When the program executes the function call instruction the CPU stores the memory address of the instruction following the function call, copies the arguments of the function on the stack and finally transfers control to the specified function. The CPU then executes the function code, stores the function return value in a predefined memory location/register and returns control to the calling function. This can become overhead if the execution time of function is less than the switching time from the caller function to called function (callee). For functions that are large and/or perform complex tasks, the overhead of the function call is usually insignificant compared to the amount of time the function takes to run. However, for small, commonly-used functions, the time needed to make the function call is often a lot more than the time needed to actually

Return reverse iterator to reverse beginning. Returns a reverse iterator pointing to the last element in the vector (i.e., its reverse beginning). vector::rbegin() is a built-in function in C++ STL which returns a reverse iterator pointing to the last element in the container. Reverse iterators iterate backwards: increasing them moves them towards the beginning of the container. rbegin points to the element right before the one that would be pointed to by member end. Notice that unlike member vector::back, which returns a reference to this same element, this function returns a reverse random access iterator.

This class reverses the direction in which a bidirectional or random-access iterator iterates through a range. A copy of the original iterator (the base iterator) is kept internally and used to reflect the operations performed on the reverse_iterator: whenever the reverse_iterator is incremented, its base iterator is decreased, and vice versa. A copy of the base iterator with the current state can be obtained at any time by calling member base. Notice however that when an iterator is reversed, the reversed version does not point to the same element in the range, but to the one preceding it. This is so, in order to arrange for the past-the-end element of a range: An iterator pointing to a past-the-end element in a range, when reversed, is pointing to the last element (not past it) of the range (this would be the first element of the reversed range). And if an iterator to the first element in a range is reversed, the reversed iterator points to the element before the first element

Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector. This function does not accept any parameter.

Return reverse iterator to reverse end. Returns a reverse iterator pointing to the theoretical element preceding the first element in the vector (which is considered its reverse end). The C++ vector::rend function returns the reverse iterator pointing to the element preceding the first element (reversed past-the-last element) of the vector. A reverse iterator iterates in backward direction and increasing it results into moving to the beginning of the vector container. Similarly, decreasing a reverse iterator results into moving to the end of the vector container. The range between vector::rbegin and vector::rend contains all the elements of the vector (in reverse order).

In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.

A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.

In C++, pair is defined as a container in a header library <utility> which combines the two data elements having either the same data types or different data types. In general, the pair in C++ is defined as a tuple in Python programming language which also can give the output as a combined result of joining the two items specified by the pair container and it consists of the first element will be first and the second element will be second only it cannot be disturbed in the order or sequence of elements specified and are always accessed by the dot operator followed by the keyword "first" and "second" elements respectively. In C++ the pair is a container in <utility> header and is also a container class in STL (Standard Template Library) which uses "std" namespace so it will be as std::pair template class for demonstrating pair as a tuple.

In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program. The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index.

Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin. This function does not accept any parameter.

#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.

C++ Program to find the trnasitive closure of a given graph. In mathematics, the transitive closure of a binary relation R on a set X is the "transitive relation" R+ on set X such that R+

All the "variables" must be declared before to use or initial statements of the block or main or function or global. Variables should specify with data type. And it binds a "data type" and

C++ Program to generate Random Numbers using Multiply with 'Carry' method. multiply-with-carry ("MWC") is a method invented by 'George Marsaglia' for generating sequences

Program checks whether an year ("integer") entered by the user is a leap year or not. All years which are "perfectly divisible" by 4 are leap years except for century years which is