C++ Programming Code Examples
C++ > Computer Graphics Code Examples
Check Whether an Undirected Graph Contains a Eulerian Path
/* Check Whether an Undirected Graph Contains a Eulerian Path
This is a C++ Program to check whether an undirected graph contains Eulerian Path. The criteran Euler suggested,
1. If graph has no odd degree vertex, there is at least one Eulerian Circuit.
2. If graph as two vertices with odd degree, there is no Eulerian Circuit but at least one Eulerian Path.
3. If graph has more than two vertices with odd degree, there is no Eulerian Circuit or Eulerian Path. */
// A C++ program to check if a given graph is Eulerian or not
#include<iostream>
#include <list>
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
public:
// Constructor and destructor
Graph(int V)
{
this->V = V;
adj = new list<int> [V];
}
~Graph()
{
delete[] adj;
} // To avoid memory leak
// function to add an edge to graph
void addEdge(int v, int w);
// Method to check if this graph is Eulerian or not
int isEulerian();
// Method to check if all non-zero degree vertices are connected
bool isConnected();
// Function to do DFS starting from v. Used in isConnected();
void DFSUtil(int v, bool visited[]);
};
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// Method to check if all non-zero degree vertices are connected.
// It mainly does DFS traversal starting from
bool Graph::isConnected()
{
// Mark all the vertices as not visited
bool visited[V];
int i;
for (i = 0; i < V; i++)
visited[i] = false;
// Find a vertex with non-zero degree
for (i = 0; i < V; i++)
if (adj[i].size() != 0)
break;
// If there are no edges in the graph, return true
if (i == V)
return true;
// Start DFS traversal from a vertex with non-zero degree
DFSUtil(i, visited);
// Check if all non-zero degree vertices are visited
for (i = 0; i < V; i++)
if (visited[i] == false && adj[i].size() > 0)
return false;
return true;
}
/* The function returns one of the following values
0 --> If grpah is not Eulerian
1 --> If graph has an Euler path (Semi-Eulerian)
2 --> If graph has an Euler Circuit (Eulerian) */
int Graph::isEulerian()
{
// Check if all non-zero degree vertices are connected
if (isConnected() == false)
return 0;
// Count vertices with odd degree
int odd = 0;
for (int i = 0; i < V; i++)
if (adj[i].size() & 1)
odd++;
// If count is more than 2, then graph is not Eulerian
if (odd > 2)
return 0;
// If odd count is 2, then semi-eulerian.
// If odd count is 0, then eulerian
// Note that odd count can never be 1 for undirected graph
return (odd) ? 1 : 2;
}
// Function to run test cases
void test(Graph &g)
{
int res = g.isEulerian();
if (res == 0)
cout << "Graph is not Eulerian\n";
else if (res == 1)
cout << "Graph has a Euler path\n";
else
cout << "Graph has a Euler cycle\n";
}
// Driver program to test above function
int main()
{
// Let us create and test graphs shown in above figures
Graph g1(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
cout<<"Result for Graph 1: ";
test(g1);
Graph g2(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(4, 0);
cout<<"Result for Graph 2: ";
test(g2);
Graph g3(5);
g3.addEdge(1, 0);
g3.addEdge(0, 2);
g3.addEdge(2, 1);
g3.addEdge(0, 3);
g3.addEdge(3, 4);
g3.addEdge(1, 3);
cout<<"Result for Graph 3: ";
test(g3);
// Let us create a graph with 3 vertices
// connected in the form of cycle
Graph g4(3);
g4.addEdge(0, 1);
g4.addEdge(1, 2);
g4.addEdge(2, 0);
cout<<"Result for Graph 4: ";
test(g4);
// Let us create a graph with all veritces
// with zero degree
Graph g5(3);
cout<<"Result for Graph 5: ";
test(g5);
return 0;
}
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
List is a popularly used sequence container. Container is an object that holds data of same type. List container is implemented as doubly linked-list, hence it provides bidirectional sequential access to it's data. List doesn't provide fast random access, it only supports sequential access in both directions. List allows insertion and deletion operation anywhere within a sequence in constant time. Elements of list can be scattered in different chunks of memory. Container stores necessary information to allow sequential access to it's data. Lists can shrink or expand as needed from both ends at run time. The storage requirement is fulfilled automatically by internal allocator. Zero sized lists are also valid. In that case list.begin() and list.end() points to same location. But behavior of calling front() or back() is undefined. To define the std::list, we have to import the <list> header file.
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
Deallocate storage space. Default deallocation functions (single-object form). A delete operator is used to deallocate memory space that is dynamically created using the new operator, calloc and malloc() function, etc., at the run time of a program in C++ language. In other words, a delete operator is used to release array and non-array (pointer) objects from the heap, which the new operator dynamically allocates to put variables on heap memory. We can use either the delete operator or delete [ ] operator in our program to delete the deallocated space. A delete operator has a void return type, and hence, it does not return a value.
Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a this pointer. In C++ programming, this is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++: • It can be used to pass current object as a parameter to another method. • It can be used to refer current class instance variable. • It can be used to declare indexers. To understand 'this' pointer, it is important to know how objects look at functions and data members of a class.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable. We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0. Assume variable A holds 1 and variable B holds 0:
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
Break statement in C++ is a loop control statement defined using the break keyword. It is used to stop the current execution and proceed with the next one. When a compiler calls the break statement, it immediately stops the execution of the loop and transfers the control outside the loop and executes the other statements. In the case of a nested loop, break the statement stops the execution of the inner loop and proceeds with the outer loop. The statement itself says it breaks the loop. When the break statement is called in the program, it immediately terminates the loop and transfers the flow control to the statement mentioned outside the loop.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.
Return iterator to end. Returns an iterator referring to the past-the-end element in the list container. The past-the-end element is the theoretical element that would follow the last element in the list container. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with list::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as list::begin. This function does not accept any parameter.
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Return size. Returns the number of elements in the list container. list::size() is an inbuilt function in C++ STL which is declared in <list> header file. size() returns the size of a particular list container. In other words it returns the number of elements which are present in a list container. This function does not accept any parameter. Function returns the number of elements in the container.
A destructor is a special member function that works just opposite to constructor, unlike constructors that are used for initializing an object, destructors destroy (or delete) the object. Destructors in C++ are members functions in a class that delete an object. They are called when the class object goes out of scope such as when the function ends, the program ends, a delete variable is called etc. Destructors are different from normal member functions as they don't take any argument and don't return anything. Also, destructors have the same name as their class and their name is preceded by a tilde(~).
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Return bit value. Returns whether the bit at position pos is set (i.e., whether it is one). C++ bitset test() function is used to test whether the bit at position p is set or not. The C++ bitset::test function is used to check if the bit at specified position is set or not. It returns true if the bit at specified position is set, else returns false. Unlike the access operator (operator[]), this function performs a range check on pos before retrieveing the bit value, throwing out_of_range if pos is equal or greater than the bitset size.
Allocate storage space. Default allocation functions (single-object form). A new operator is used to create the object while a delete operator is used to delete the object. When the object is created by using the new operator, then the object will exist until we explicitly use the delete operator to delete the object. Therefore, we can say that the lifetime of the object is not related to the block structure of the program.
Add element at the end. Adds a new element at the end of the list container, after its current last element. The content of val is copied (or moved) to the new element. This effectively increases the container size by one. The list:push_back() function in C++ STL is used to add a new element to an existing list container. It takes the element to be added as a parameter and adds it to the list container. This function accepts a single parameter which is mandatory value. This refers to the element needed to be added to the list, list_name. This function does not return any value.
Return iterator to beginning. Returns an iterator pointing to the first element in the list container. Notice that, unlike member list::front, which returns a reference to the first element, this function returns a bidirectional iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. begin() function is used to return an iterator pointing to the first element of the list container. It is different from the front() function because the front function returns a reference to the first element of the container but begin() function returns a bidirectional iterator to the first element of the container. This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container.
While writing C++, coders write information to a file from the program using the "stream" insertion operator (<<) and reads information using the "Stream Extraction" Operator (>>).
Adding element to a node and check if node contains element. 'Adding string' in the table. Check if table contains string. Enter String to be inserted. Display table chained with binary