C++ Programming Code Examples
C++ > Computer Graphics Code Examples
C++ Program to Check whether Graph is Biconnected
/* C++ Program to Check whether Graph is Biconnected */
#include <iostream>
#include <list>
#define NIL -1
using namespace std;
/* Class Declaration */
class Graph
{
private:
int V;
list<int> *adj;
bool isBCUtil(int v, bool visited[], int disc[], int low[],int parent[]);
public:
Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void addEdge(int v, int w);
bool isBC();
};
/* Add Edge to connect v and w */
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v);
}
/* A recursive function that returns true if there is an articulation point in given graph, otherwise returns false */
bool Graph::isBCUtil(int u, bool visited[], int disc[],int low[],int parent[])
{
static int time = 0;
int children = 0;
visited[u] = true;
disc[u] = low[u] = ++time;
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i;
if (!visited[v])
{
children++;
parent[v] = u;
if (isBCUtil(v, visited, disc, low, parent))
return true;
low[u] = min(low[u], low[v]);
if (parent[u] == NIL && children > 1)
return true;
if (parent[u] != NIL && low[v] >= disc[u])
return true;
}
else if (v != parent[u])
low[u] = min(low[u], disc[v]);
}
return false;
}
/* returns true if graph is Biconnected, otherwise false. */
bool Graph::isBC()
{
bool *visited = new bool[V];
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
}
if (isBCUtil(0, visited, disc, low, parent) == true)
return false;
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
return true;
}
/* Main Contains Menu */
int main()
{
Graph g1(2);
g1.addEdge(0, 1);
if (g1.isBC())
cout<<"The Graph is BiConnected"<<endl;
else
cout<<"The Graph is not BiConnected"<<endl;
Graph g2(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
if (g2.isBC())
cout<<"The Graph is BiConnected"<<endl;
else
cout<<"The Graph is not BiConnected"<<endl;
Graph g3(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
if (g3.isBC())
cout<<"The Graph is BiConnected"<<endl;
else
cout<<"The Graph is not BiConnected"<<endl;
Graph g4(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
if (g4.isBC())
cout<<"The Graph is BiConnected"<<endl;
else
cout<<"The Graph is not BiConnected"<<endl;
Graph g5(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
if (g5.isBC())
cout<<"The Graph is BiConnected"<<endl;
else
cout<<"The Graph is not BiConnected"<<endl;
return 0;
}
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable. We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0. Assume variable A holds 1 and variable B holds 0:
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Return iterator to end. Returns an iterator referring to the past-the-end element in the list container. The past-the-end element is the theoretical element that would follow the last element in the list container. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with list::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as list::begin. This function does not accept any parameter.
Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a this pointer. In C++ programming, this is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++: • It can be used to pass current object as a parameter to another method. • It can be used to refer current class instance variable. • It can be used to declare indexers. To understand 'this' pointer, it is important to know how objects look at functions and data members of a class.
Add element at the end. Adds a new element at the end of the list container, after its current last element. The content of val is copied (or moved) to the new element. This effectively increases the container size by one. The list:push_back() function in C++ STL is used to add a new element to an existing list container. It takes the element to be added as a parameter and adds it to the list container. This function accepts a single parameter which is mandatory value. This refers to the element needed to be added to the list, list_name. This function does not return any value.
Return iterator to beginning. Returns an iterator pointing to the first element in the list container. Notice that, unlike member list::front, which returns a reference to the first element, this function returns a bidirectional iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. begin() function is used to return an iterator pointing to the first element of the list container. It is different from the front() function because the front function returns a reference to the first element of the container but begin() function returns a bidirectional iterator to the first element of the container. This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container.
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
In the C++ Programming Language, the #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. Macro definitions are not variables and cannot be changed by your program code like variables. You generally use this syntax when creating constants that represent numbers, strings or expressions. The syntax for creating a constant using #define in the C++ is: #define token value
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.
Static is a keyword in C++ used to give special characteristics to an element. Static elements are allocated storage only once in a program lifetime in static storage area. And they have a scope till the program lifetime. In C++, static is a keyword or modifier that belongs to the type not instance. So instance is not required to access the static members. In C++, static can be field, method, constructor, class, properties, operator and event. Advantage of C++ static keyword: Memory efficient. Now we don't need to create instance for accessing the static members, so it saves memory. Moreover, it belongs to the type, so it will not get memory each time when instance is created.
Return the smallest. Returns the smallest of a and b. If both are equivalent, a is returned. min() function is a library function of algorithm header, it is used to find the smallest value from given two values, it accepts two values and returns the smallest value and if both the values are the same it returns the first value. The versions for initializer lists (3) return the smallest of all the elements in the list. Returning the first of them if these are more than one. The function uses operator< (or comp, if provided) to compare the values.
List is a popularly used sequence container. Container is an object that holds data of same type. List container is implemented as doubly linked-list, hence it provides bidirectional sequential access to it's data. List doesn't provide fast random access, it only supports sequential access in both directions. List allows insertion and deletion operation anywhere within a sequence in constant time. Elements of list can be scattered in different chunks of memory. Container stores necessary information to allow sequential access to it's data. Lists can shrink or expand as needed from both ends at run time. The storage requirement is fulfilled automatically by internal allocator. Zero sized lists are also valid. In that case list.begin() and list.end() points to same location. But behavior of calling front() or back() is undefined. To define the std::list, we have to import the <list> header file.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
Allocate storage space. Default allocation functions (single-object form). A new operator is used to create the object while a delete operator is used to delete the object. When the object is created by using the new operator, then the object will exist until we explicitly use the delete operator to delete the object. Therefore, we can say that the lifetime of the object is not related to the block structure of the program.
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
This is a C++ Program to check whether tree is Subtree of another tree. Given two binary trees, check if the first tree is subtree of the second one. A subtree of a tree T is a tree S
To concatenate strings in 'C++' Programming, you have to ask to enter the 2 string and start concatenating one string into other using the strcat() function as shown here in the sample