Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Computer Graphics Code Examples

C++ Program to Check whether Undirected Graph is Connected using DFS

/* C++ Program to Check whether Undirected Graph is Connected using DFS */ #include <iostream> #include <list> #include <stack> using namespace std; /* Class Declaration */ class Graph { private: int V; list<int> *adj; void DFSUtil(int v, bool visited[]); public: Graph(int V) { this->V = V; adj = new list<int>[V]; } ~Graph() { delete [] adj; } void addEdge(int v, int w); bool isConnected(); Graph getTranspose(); }; /* A recursive function to print DFS starting from v */ void Graph::DFSUtil(int v, bool visited[]) { visited[v] = true; list<int>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) DFSUtil(*i, visited); } /* Function that returns reverse (or transpose) of this graph */ Graph Graph::getTranspose() { Graph g(V); for (int v = 0; v < V; v++) { list<int>::iterator i; for(i = adj[v].begin(); i != adj[v].end(); ++i) { g.adj[*i].push_back(v); } } return g; } /* Add Edge to connect v and w */ void Graph::addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); } /* Check if Graph is Connected */ bool Graph::isConnected() { bool visited[V]; for (int i = 0; i < V; i++) visited[i] = false; DFSUtil(0, visited); for (int i = 0; i < V; i++) if (visited[i] == false) return false; Graph gr = getTranspose(); for(int i = 0; i < V; i++) visited[i] = false; gr.DFSUtil(0, visited); for (int i = 0; i < V; i++) if (visited[i] == false) return false; return true; } /* Main Contains Menu */ int main() { Graph g1(5); g1.addEdge(0, 1); g1.addEdge(1, 2); g1.addEdge(2, 3); g1.addEdge(3, 0); g1.addEdge(2, 4); g1.addEdge(4, 2); if (g1.isConnected()) cout<<"The Graph is Conneted"<<endl; else cout<<"The Graph is not Connected"<<endl; Graph g2(4); g2.addEdge(0, 1); g2.addEdge(1, 2); g2.addEdge(2, 3); if (g2.isConnected()) cout<<"The Graph is Connected"<<endl; else cout<<"The Graph is not Connected"<<endl; return 0; }

In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.

Add element at the end. Adds a new element at the end of the list container, after its current last element. The content of val is copied (or moved) to the new element. This effectively increases the container size by one. The list:push_back() function in C++ STL is used to add a new element to an existing list container. It takes the element to be added as a parameter and adds it to the list container. This function accepts a single parameter which is mandatory value. This refers to the element needed to be added to the list, list_name. This function does not return any value.

A destructor is a special member function that works just opposite to constructor, unlike constructors that are used for initializing an object, destructors destroy (or delete) the object. Destructors in C++ are members functions in a class that delete an object. They are called when the class object goes out of scope such as when the function ends, the program ends, a delete variable is called etc. Destructors are different from normal member functions as they don't take any argument and don't return anything. Also, destructors have the same name as their class and their name is preceded by a tilde(~).

The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.

Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a this pointer. In C++ programming, this is a keyword that refers to the current instance of the class. There can be 3 main usage of this keyword in C++: • It can be used to pass current object as a parameter to another method. • It can be used to refer current class instance variable. • It can be used to declare indexers. To understand 'this' pointer, it is important to know how objects look at functions and data members of a class.

The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type. You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.

#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.

In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.

A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.

Return iterator to end. Returns an iterator referring to the past-the-end element in the list container. The past-the-end element is the theoretical element that would follow the last element in the list container. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with list::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as list::begin. This function does not accept any parameter.

List is a popularly used sequence container. Container is an object that holds data of same type. List container is implemented as doubly linked-list, hence it provides bidirectional sequential access to it's data. List doesn't provide fast random access, it only supports sequential access in both directions. List allows insertion and deletion operation anywhere within a sequence in constant time. Elements of list can be scattered in different chunks of memory. Container stores necessary information to allow sequential access to it's data. Lists can shrink or expand as needed from both ends at run time. The storage requirement is fulfilled automatically by internal allocator. Zero sized lists are also valid. In that case list.begin() and list.end() points to same location. But behavior of calling front() or back() is undefined. To define the std::list, we have to import the <list> header file.

Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.

A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.

In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.

Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.

Deallocate storage space. Default deallocation functions (single-object form). A delete operator is used to deallocate memory space that is dynamically created using the new operator, calloc and malloc() function, etc., at the run time of a program in C++ language. In other words, a delete operator is used to release array and non-array (pointer) objects from the heap, which the new operator dynamically allocates to put variables on heap memory. We can use either the delete operator or delete [ ] operator in our program to delete the deallocated space. A delete operator has a void return type, and hence, it does not return a value.

The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.

Return iterator to beginning. Returns an iterator pointing to the first element in the list container. Notice that, unlike member list::front, which returns a reference to the first element, this function returns a bidirectional iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. begin() function is used to return an iterator pointing to the first element of the list container. It is different from the front() function because the front function returns a reference to the first element of the container but begin() function returns a bidirectional iterator to the first element of the container. This function does not accept any parameter. Function returns an iterator to the beginning of the sequence container.

C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of statements inside another loop. Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any number of loops. The nesting level can be defined at n times. You can define any type of loop inside another loop; for example, you can define 'while' loop inside a 'for' loop. A loop inside another loop is called a nested loop. The depth of nested loop depends on the complexity of a problem. We can have any number of nested loops as required. Consider a nested loop where the outer loop runs n times and consists of another loop inside it. The inner loop runs m times. Then, the total number of times the inner loop runs during the program execution is n*m.

Allocate storage space. Default allocation functions (single-object form). A new operator is used to create the object while a delete operator is used to delete the object. When the object is created by using the new operator, then the object will exist until we explicitly use the delete operator to delete the object. Therefore, we can say that the lifetime of the object is not related to the block structure of the program.





A simple c++ program which shows using of switch statement in c++. C++ Program which takes input a grade and display Grade Points Average GPA. Program takes inputs A,a, B,b,



In C++, This category of the operators is used to compare different values. The result of the operation is a Boolean value. The "Relational" operators are used in the form Operand1 and



The 'Heapsort' is a comparison-based sorting algorithm. 'Heapsort' can be thought of as an improved 'Selection Sort': like that algorithm, it divides its input into a sorted & an unsorted