C++ Programming Code Examples C++ > Computer Graphics Code Examples C++ Program to Implement Interval Tree C++ Program to Implement Interval Tree This is a C++ Program to implement interval tree. In computer science, an interval tree is an ordered tree data structure to hold intervals. Specifically, it allows one to efficiently find all intervals that overlap with any given interval or point. It is often used for windowing queries, for instance, to find all roads on a computerized map inside a rectangular viewport, or to find all visible elements inside a three-dimensional scene. A similar data structure is the segment tree. #include <iostream> using namespace std; struct Interval { int low, high; }; struct ITNode { Interval *i; // 'i' could also be a normal variable int max; ITNode *left, *right; }; // A utility function to create a new Interval Search Tree Node ITNode * newNode(Interval i) { ITNode *temp = new ITNode; temp->i = new Interval(i); temp->max = i.high; temp->left = temp->right = NULL; }; // A utility function to insert a new Interval Search Tree Node // This is similar to BST Insert. Here the low value of interval is used tomaintain BST property ITNode *insert(ITNode *root, Interval i) { // Base case: Tree is empty, new node becomes root if (root == NULL) return newNode(i); // Get low value of interval at root int l = root->i->low; // If root's low value is smaller, then new interval goes to left subtree if (i.low < l) root->left = insert(root->left, i); // Else, new node goes to right subtree. else root->right = insert(root->right, i); // Update the max value of this ancestor if needed if (root->max < i.high) root->max = i.high; return root; } // A utility function to check if given two intervals overlap bool doOVerlap(Interval i1, Interval i2) { if (i1.low <= i2.high && i2.low <= i1.high) return true; return false; } // The main function that searches a given interval i in a given Interval Tree. Interval *intervalSearch(ITNode *root, Interval i) { // Base Case, tree is empty if (root == NULL) return NULL; // If given interval overlaps with root if (doOVerlap(*(root->i), i)) return root->i; // If left child of root is present and max of left child is greater than or equal to given interval, then i may overlap with an interval is left subtree if (root->left != NULL && root->left->max >= i.low) return intervalSearch(root->left, i); // Else interval can only overlap with right subtree return intervalSearch(root->right, i); } void inorder(ITNode *root) { if (root == NULL) return; inorder(root->left); cout << "[" << root->i->low << ", " << root->i->high << "]" << " max = " << root->max << endl; inorder(root->right); } int main(int argc, char **argv) { Interval ints[] = { { 15, 20 }, { 10, 30 }, { 17, 19 }, { 5, 20 }, { 12, 15 }, { 30, 40 } }; int n = sizeof(ints) / sizeof(ints[0]); ITNode *root = NULL; for (int i = 0; i < n; i++) root = insert(root, ints[i]); cout << "In-order traversal of constructed Interval Tree is\n"; inorder(root); Interval x = { 6, 7 }; cout << "\nSearching for interval [" << x.low << "," << x.high << "]"; Interval *res = intervalSearch(root, x); if (res == NULL) cout << "\nNo Overlapping Interval"; else cout << "\nOverlaps with [" << res->low << ", " << res->high << "]"; }