C++ Programming Code Examples
C++ > Computer Graphics Code Examples
Program to Create a Random Graph Using Random Edge Generation
/* Program to Create a Random Graph Using Random Edge Generation
- This algorithm generates a undirected random graph for some random number of edges and vertexes.
- The time complexity of this algorithm is O(v*e).
- This algorithm randomly assigns a number of vertexes and edges of the graph.
- It connects vertexes randomly and generates cyclic, acyclic or disconnected undirected graphs. */
#include<iostream>
#include<stdlib.h>
using namespace std;
// A function to generate random graph.
void GenerateRandGraphs(int NOE, int NOV)
{
int i, j, edge[NOE][2], count;
i = 0;
// Build a connection between two random vertex.
while(i < NOE)
{
edge[i][0] = rand()%NOV+1;
edge[i][1] = rand()%NOV+1;
if(edge[i][0] == edge[i][1])
continue;
else
{
for(j = 0; j < i; j++)
{
if((edge[i][0] == edge[j][0] && edge[i][1] == edge[j][1]) || (edge[i][0] == edge[j][1] && edge[i][1] == edge[j][0]))
i--;
}
}
i++;
}
// Print the random graph.
cout<<"\nThe generated random random graph is: ";
for(i = 0; i < NOV; i++)
{
count = 0;
cout<<"\n\t"<<i+1<<"-> { ";
for(j = 0; j < NOE; j++)
{
if(edge[j][0] == i+1)
{
cout<<edge[j][1]<<" ";
count++;
}
else if(edge[j][1] == i+1)
{
cout<<edge[j][0]<<" ";
count++;
}
else if(j == NOE-1 && count == 0)
cout<<"Isolated Vertex!";
}
cout<<" }";
}
}
int main()
{
int n, i, e, v;
cout<<"Random graph generation: ";
// Randomly assign vertex and edges of the graph.
v = 11+rand()%10;
cout<<"\nThe graph has "<<v<<" vertexes.";
e = rand()%((v*(v-1))/2);
cout<<"\nThe graph has "<<e<<" edges.";
// A function to generate a random undirected graph with e edges and v vertexes.
GenerateRandGraphs(e, v);
}
Continue statement is used inside loops. Whenever a continue statement is encountered inside a loop, control directly jumps to the beginning of the loop for next iteration, skipping the execution of statements inside loop's body for the current iteration. The continue statement works somewhat like the break statement. Instead of forcing termination, however, continue forces the next iteration of the loop to take place, skipping any code in between. For the for loop, continue causes the conditional test and increment portions of the loop to execute. For the while and do...while loops, program control passes to the conditional tests.
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
In while loop, condition is evaluated first and if it returns true then the statements inside while loop execute, this happens repeatedly until the condition returns false. When condition returns false, the control comes out of loop and jumps to the next statement in the program after while loop. The important point to note when using while loop is that we need to use increment or decrement statement inside while loop so that the loop variable gets changed on each iteration, and at some point condition returns false. This way we can end the execution of while loop otherwise the loop would execute indefinitely. A while loop that never stops is said to be the infinite while loop, when we give the condition in such a way so that it never returns false, then the loops becomes infinite and repeats itself indefinitely.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Generate random number. Returns a pseudo-random integral number in the range between 0 and RAND_MAX. This number is generated by an algorithm that returns a sequence of apparently non-related numbers each time it is called. This algorithm uses a seed to generate the series, which should be initialized to some distinctive value using function srand. RAND_MAX is a constant defined in <cstdlib>. The rand() function in C++ is used to generate random numbers; it will generate the same number every time we run the program. In order to seed the rand() function, srand(unsigned int seed) is used. The srand() function sets the initial point for generating the pseudo-random numbers. The rand() function generates numbers randomly.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable. We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0. Assume variable A holds 1 and variable B holds 0:
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of statements inside another loop. Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any number of loops. The nesting level can be defined at n times. You can define any type of loop inside another loop; for example, you can define 'while' loop inside a 'for' loop. A loop inside another loop is called a nested loop. The depth of nested loop depends on the complexity of a problem. We can have any number of nested loops as required. Consider a nested loop where the outer loop runs n times and consists of another loop inside it. The inner loop runs m times. Then, the total number of times the inner loop runs during the program execution is n*m.
An array is a collection of data items, all of the same type, accessed using a common name. A one-dimensional array is like a list; A two dimensional array is like a table; The C++ language places no limits on the number of dimensions in an array, though specific implementations may. Some texts refer to one-dimensional arrays as vectors, two-dimensional arrays as matrices, and use the general term arrays when the number of dimensions is unspecified or unimportant. (2D) array in C++ programming is also known as matrix. A matrix can be represented as a table of rows and columns. In C/C++, we can define multi dimensional arrays in simple words as array of arrays. Data in multi dimensional arrays are stored in tabular form (in row major order).
This is a C++ Program to check if BST is AVL. An AVL tree is a self-balancing binary search tree. It was the first such data structure to be invented. In an "AVL tree", the heights of the