C++ Programming Code Examples
C++ > Data Structures Code Examples
C++ Program To Implement Circular Singly Linked List
/* C++ Program To Implement Circular Singly Linked List */
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
/* Node Declaration */
struct node
{
int info;
struct node *next;
}*last;
/* Class Declaration */
class circular_llist
{
public:
void create_node(int value);
void add_begin(int value);
void add_after(int value, int position);
void delete_element(int value);
void search_element(int value);
void display_list();
void update();
void sort();
circular_llist()
{
last = NULL;
}
};
/* Main :contains menu */
int main()
{
int choice, element, position;
circular_llist cl;
while (1)
{
cout<<endl<<"---------------------------"<<endl;
cout<<endl<<"Circular singly linked list"<<endl;
cout<<endl<<"---------------------------"<<endl;
cout<<"1.Create Node"<<endl;
cout<<"2.Add at beginning"<<endl;
cout<<"3.Add after"<<endl;
cout<<"4.Delete"<<endl;
cout<<"5.Search"<<endl;
cout<<"6.Display"<<endl;
cout<<"7.Update"<<endl;
cout<<"8.Sort"<<endl;
cout<<"9.Quit"<<endl;
cout<<"Enter your choice : ";
cin>>choice;
switch(choice)
{
case 1:
cout<<"Enter the element: ";
cin>>element;
cl.create_node(element);
cout<<endl;
break;
case 2:
cout<<"Enter the element: ";
cin>>element;
cl.add_begin(element);
cout<<endl;
break;
case 3:
cout<<"Enter the element: ";
cin>>element;
cout<<"Insert element after position: ";
cin>>position;
cl.add_after(element, position);
cout<<endl;
break;
case 4:
if (last == NULL)
{
cout<<"List is empty, nothing to delete"<<endl;
break;
}
cout<<"Enter the element for deletion: ";
cin>>element;
cl.delete_element(element);
cout<<endl;
break;
case 5:
if (last == NULL)
{
cout<<"List Empty!! Can't search"<<endl;
break;
}
cout<<"Enter the element to be searched: ";
cin>>element;
cl.search_element(element);
cout<<endl;
break;
case 6:
cl.display_list();
break;
case 7:
cl.update();
break;
case 8:
cl.sort();
break;
case 9:
exit(1);
break;
default:
cout<<"Wrong choice"<<endl;
}
}
return 0;
}
/* Create Circular Link List */
void circular_llist::create_node(int value)
{
struct node *temp;
temp = new(struct node);
temp->info = value;
if (last == NULL)
{
last = temp;
temp->next = last;
}
else
{
temp->next = last->next;
last->next = temp;
last = temp;
}
}
/* Insertion of element at beginning */
void circular_llist::add_begin(int value)
{
if (last == NULL)
{
cout<<"First Create the list."<<endl;
return;
}
struct node *temp;
temp = new(struct node);
temp->info = value;
temp->next = last->next;
last->next = temp;
}
/* Insertion of element at a particular place */
void circular_llist::add_after(int value, int pos)
{
if (last == NULL)
{
cout<<"First Create the list."<<endl;
return;
}
struct node *temp, *s;
s = last->next;
for (int i = 0;i < pos-1;i++)
{
s = s->next;
if (s == last->next)
{
cout<<"There are less than ";
cout<<pos<<" in the list"<<endl;
return;
}
}
temp = new(struct node);
temp->next = s->next;
temp->info = value;
s->next = temp;
/*Element inserted at the end*/
if (s == last)
{
last=temp;
}
}
/* Deletion of element from the list */
void circular_llist::delete_element(int value)
{
struct node *temp, *s;
s = last->next;
/* If List has only one element*/
if (last->next == last && last->info == value)
{
temp = last;
last = NULL;
free(temp);
return;
}
if (s->info == value) /*First Element Deletion*/
{
temp = s;
last->next = s->next;
free(temp);
return;
}
while (s->next != last)
{
/*Deletion of Element in between*/
if (s->next->info == value)
{
temp = s->next;
s->next = temp->next;
free(temp);
cout<<"Element "<<value;
cout<<" deleted from the list"<<endl;
return;
}
s = s->next;
}
/*Deletion of last element*/
if (s->next->info == value)
{
temp = s->next;
s->next = last->next;
free(temp);
last = s;
return;
}
cout<<"Element "<<value<<" not found in the list"<<endl;
}
/* Search element in the list */
void circular_llist::search_element(int value)
{
struct node *s;
int counter = 0;
s = last->next;
while (s != last)
{
counter++;
if (s->info == value)
{
cout<<"Element "<<value;
cout<<" found at position "<<counter<<endl;
return;
}
s = s->next;
}
if (s->info == value)
{
counter++;
cout<<"Element "<<value;
cout<<" found at position "<<counter<<endl;
return;
}
cout<<"Element "<<value<<" not found in the list"<<endl;
}
/* Display Circular Link List */
void circular_llist::display_list()
{
struct node *s;
if (last == NULL)
{
cout<<"List is empty, nothing to display"<<endl;
return;
}
s = last->next;
cout<<"Circular Link List: "<<endl;
while (s != last)
{
cout<<s->info<<"->";
s = s->next;
}
cout<<s->info<<endl;
}
/* Update Circular Link List */
void circular_llist::update()
{
int value, pos, i;
if (last == NULL)
{
cout<<"List is empty, nothing to update"<<endl;
return;
}
cout<<"Enter the node position to be updated: ";
cin>>pos;
cout<<"Enter the new value: ";
cin>>value;
struct node *s;
s = last->next;
for (i = 0;i < pos - 1;i++)
{
if (s == last)
{
cout<<"There are less than "<<pos<<" elements.";
cout<<endl;
return;
}
s = s->next;
}
s->info = value;
cout<<"Node Updated"<<endl;
}
/* Sort Circular Link List */
void circular_llist::sort()
{
struct node *s, *ptr;
int temp;
if (last == NULL)
{
cout<<"List is empty, nothing to sort"<<endl;
return;
}
s = last->next;
while (s != last)
{
ptr = s->next;
while (ptr != last->next)
{
if (ptr != last->next)
{
if (s->info > ptr->info)
{
temp = s->info;
s->info = ptr->info;
ptr->info = temp;
}
}
else
{
break;
}
ptr = ptr->next;
}
s = s->next;
}
}
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable. We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0. Assume variable A holds 1 and variable B holds 0:
In C++, classes and structs are blueprints that are used to create the instance of a class. Structs are used for lightweight objects such as Rectangle, color, Point, etc. Unlike class, structs in C++ are value type than reference type. It is useful if you have data that is not intended to be modified after creation of struct. C++ Structure is a collection of different data types. It is similar to the class that holds different types of data. A structure is declared by preceding the struct keyword followed by the identifier(structure name). Inside the curly braces, we can declare the member variables of different types.
Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case match is found, a block of statements associated with that particular case is executed. Each case in a block of a switch has a different name/number which is referred to as an identifier. The value provided by the user is compared with all the cases inside the switch block until the match is found. If a case match is NOT found, then the default statement is executed, and the control goes out of the switch block. • The expression can be integer expression or a character expression. • Value-1, 2, n are case labels which are used to identify each case individually. Remember that case labels should not be same as it may create a problem while executing a program. Suppose we have two cases with the same label as '1'. Then while executing the program, the case that appears first will be executed even though you want the program to execute a second case. This creates problems in the program and
In C++, constructor is a special method which is invoked automatically at the time of object creation. It is used to initialize the data members of new object generally. The constructor in C++ has the same name as class or structure. Constructors are special class functions which performs initialization of every object. The Compiler calls the Constructor whenever an object is created. Constructors initialize values to object members after storage is allocated to the object. Whereas, Destructor on the other hand is used to destroy the class object. • Default Constructor: A constructor which has no argument is known as default constructor. It is invoked at the time of creating object.
The exit function terminates the program normally. Automatic objects are not destroyed, but static objects are. Then, all functions registered with atexit are called in the opposite order of registration. The code is returned to the operating system. An exit code of 0 or EXIT_SUCCESS means successful completion. If code is EXIT_FAILURE, an indication of program failure is returned to the operating system. Other values of code are implementation-defined. Calls all functions registered with the atexit() function, and destroys C++ objects with static storage duration, all in last-in-first-out (LIFO) order. C++ objects with static storage duration are destroyed in the reverse order of the completion of their constructor. (Automatic objects are not destroyed as a result of calling exit().)
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types. A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
In while loop, condition is evaluated first and if it returns true then the statements inside while loop execute, this happens repeatedly until the condition returns false. When condition returns false, the control comes out of loop and jumps to the next statement in the program after while loop. The important point to note when using while loop is that we need to use increment or decrement statement inside while loop so that the loop variable gets changed on each iteration, and at some point condition returns false. This way we can end the execution of while loop otherwise the loop would execute indefinitely. A while loop that never stops is said to be the infinite while loop, when we give the condition in such a way so that it never returns false, then the loops becomes infinite and repeats itself indefinitely.
The cin object is used to accept input from the standard input device i.e. keyboard. It is defined in the iostream header file. C++ cin statement is the instance of the class istream and is used to read input from the standard input device which is usually a keyboard. The extraction operator(>>) is used along with the object cin for reading inputs. The extraction operator extracts the data from the object cin which is entered using the keyboard. The "c" in cin refers to "character" and "in" means "input". Hence cin means "character input". The cin object is used along with the extraction operator >> in order to receive a stream of characters.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Deallocate memory block. A block of memory previously allocated by a call to malloc, calloc or realloc is deallocated, making it available again for further allocations. If ptr does not point to a block of memory allocated with the above functions, it causes undefined behavior. If ptr is a null pointer, the function does nothing. Notice that this function does not change the value of ptr itself, hence it still points to the same (now invalid) location. free() function in C++ <cstdlib> library is used to deallocate a memory block in C++. Whenever we call malloc, calloc or realloc function to allocate a memory block dynamically in C++, compiler allocates a block of size bytes of memory and returns a pointer to the start of the block. The new memory block allocated is not initialized but have intermediate values. free() method is used to free such block of memory. In case the pointer mentioned does not point to any memory block then it may lead to an undefined behavior, but does nothing in case of null
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
Break statement in C++ is a loop control statement defined using the break keyword. It is used to stop the current execution and proceed with the next one. When a compiler calls the break statement, it immediately stops the execution of the loop and transfers the control outside the loop and executes the other statements. In the case of a nested loop, break the statement stops the execution of the inner loop and proceeds with the outer loop. The statement itself says it breaks the loop. When the break statement is called in the program, it immediately terminates the loop and transfers the flow control to the statement mentioned outside the loop.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Allocate storage space. Default allocation functions (single-object form). A new operator is used to create the object while a delete operator is used to delete the object. When the object is created by using the new operator, then the object will exist until we explicitly use the delete operator to delete the object. Therefore, we can say that the lifetime of the object is not related to the block structure of the program.
C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of statements inside another loop. Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any number of loops. The nesting level can be defined at n times. You can define any type of loop inside another loop; for example, you can define 'while' loop inside a 'for' loop. A loop inside another loop is called a nested loop. The depth of nested loop depends on the complexity of a problem. We can have any number of nested loops as required. Consider a nested loop where the outer loop runs n times and consists of another loop inside it. The inner loop runs m times. Then, the total number of times the inner loop runs during the program execution is n*m.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Prints a total number of combination possible for given n and r value. The "time complexity" of this algorithm is O(n). This algorithm takes the input of n and r value. Function to find the
Perform addition, subtraction, multiplication and division of any two numbers in 'C++', you have to enter the 'two number' and enter the operator to perform the particular operation
Simple C++ program to display "Hello, World" on the screen. Since, it's a simple program, it is often used to illustrate the syntax of a c++ programming language. Every C++ program
This is a C++ Program to find the "cliques" of size k in a a graph. An "undirected graph" is formed by a finite set of vertices and a set of unordered pairs of vertices, which are called