Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Games Code Examples

Turn based battle system

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* Turn based battle system */ #include <iostream.h> #include <stdlib.h> #include <stdio.h> int hp = 20, mp = 20, ehp = 35, move; void lose (void) { cout << "You lose." << endl; hp = 20; mp = 20; ehp = 20; } void win (void) { cout << "You win." << endl; hp = 20; mp = 20; ehp = 20; } int main() { label: cout << "ehp: " << ehp << endl << "hp: " << hp << endl << "mp: " << mp << endl << "(1) Attack" << endl << "(2) Magic Missle" <<endl << "(3) Summon" << endl; cin >> move; system("cls"); cout << "Status:" << endl; if (move == 1) { cout << "You sliced the enemy with your sword." << endl; ehp -= 1; if (ehp < 0) { win(); return 0; } if (hp < 0) { lose(); return 0; } cout << "The enemy cast a Magic Missle." << endl << endl; hp -= 2; } if (move == 2) { cout << "You cast a devistating Magic Missle." << endl; ehp -= 2; mp -= 1; if (ehp < 0) { win(); return 0; } if (hp < 0) { lose(); return 0; } cout << "The enemy used his sword." << endl << endl; hp -= 1; } if (move == 3) { cout << "You summoned Ultima!" << endl; ehp -= 10; mp -= 15; hp -= 1; if (ehp < 0) { win(); return 0; } if (hp < 0) { lose(); return 0; } cout << "The enemy used his sword." << endl << endl; hp -= 1; } goto label; }
Standard Input Stream (cin) in C++
The cin object is used to accept input from the standard input device i.e. keyboard. It is defined in the iostream header file. C++ cin statement is the instance of the class istream and is used to read input from the standard input device which is usually a keyboard. The extraction operator(>>) is used along with the object cin for reading inputs. The extraction operator extracts the data from the object cin which is entered using the keyboard.
Syntax for Standard Input Stream (cin) in C++
cin >> var_name;
>>
is the extraction operator.
var_name
is usually a variable, but can also be an element of containers like arrays, vectors, lists, etc. The "c" in cin refers to "character" and "in" means "input". Hence cin means "character input". The cin object is used along with the extraction operator >> in order to receive a stream of characters. The >> operator can also be used more than once in the same statement to accept multiple inputs. The cin object can also be used with other member functions such as getline(), read(), etc. Some of the commonly used member functions are: • cin.get(char &ch): Reads an input character and stores it in ch. • cin.getline(char *buffer, int length): Reads a stream of characters into the string buffer, It stops when: it has read length-1 characters or when it finds an end-of-line character '\n' or the end of the file eof. • cin.read(char *buffer, int n): Reads n bytes (or until the end of the file) from the stream into the buffer. • cin.ignore(int n): Ignores the next n characters from the input stream. • cin.eof(): Returns a non-zero value if the end of file (eof) is reached. The prototype of cin as defined in the iostream header file is: extern istream cin; The cin object in C++ is an object of class istream. It is associated with the standard C input stream stdin. The cin object is ensured to be initialized during or before the first time an object of type ios_base::Init is constructed. After the cin object is constructed, cin.tie() returns &cout. This means that any formatted input operation on cin forces a call to cout.flush() if any characters are pending for output.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Standard Input Stream (cin) in C++ language */ // cin with Member Functions #include <iostream> using namespace std; int main() { char name[20], address[20]; cout << "Name: "; // use cin with getline() cin.getline(name, 20); cout << "Address: "; cin.getline(address, 20); cout << endl << "You entered " << endl; cout << "Name = " << name << endl; cout << "Address = " << address; return 0; }
If Else Statement in C++
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement,
Syntax for If Statement in C++
if (condition) { // body of if statement }
The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Syntax for If...Else Statement
if (condition) { // block of code if condition is true } else { // block of code if condition is false }
The if..else statement evaluates the condition inside the parenthesis. If the condition evaluates true, the code inside the body of if is executed, the code inside the body of else is skipped from execution. If the condition evaluates false, the code inside the body of else is executed, the code inside the body of if is skipped from execution. The if...else statement is used to execute a block of code among two alternatives. However, if we need to make a choice between more than two alternatives, we use the if...else if...else statement.
Syntax for If...Else...Else If Statement in C++
if (condition1) { // code block 1 } else if (condition2){ // code block 2 } else { // code block 3 }
• If condition1 evaluates to true, the code block 1 is executed. • If condition1 evaluates to false, then condition2 is evaluated. • If condition2 is true, the code block 2 is executed. • If condition2 is false, the code block 3 is executed. There can be more than one else if statement but only one if and else statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax for If Else If Ladder in C++
if (condition) statement 1; else if (condition) statement 2; . . else statement;
Working of the if-else-if ladder: 1. Control falls into the if block. 2. The flow jumps to Condition 1. 3. Condition is tested. If Condition yields true, goto Step 4. If Condition yields false, goto Step 5. 4. The present block is executed. Goto Step 7. 5. The flow jumps to Condition 2. If Condition yields true, goto step 4. If Condition yields false, goto Step 6. 6. The flow jumps to Condition 3. If Condition yields true, goto step 4. If Condition yields false, execute else block. Goto Step 7. 7. Exits the if-else-if ladder. • The if else ladder statement in C++ programming language is used to check set of conditions in sequence. • This is useful when we want to selectively executes one code block(out of many) based on certain conditions. • It allows us to check for multiple condition expressions and execute different code blocks for more than two conditions. • A condition expression is tested only when all previous if conditions in if-else ladder is false. • If any of the conditional expression evaluates to true, then it will execute the corresponding code block and exits whole if-else ladder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* If Else Statement in C++ Language */ #include <iostream> using namespace std; int main () { // local variable declaration: int a = 100; // check the boolean condition if( a < 20 ) { // if condition is true then print the following cout << "a is less than 20;" << endl; } else { // if condition is false then print the following cout << "a is not less than 20;" << endl; } cout << "value of a is : " << a << endl; return 0; }
Standard end line (endl) in C++
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
Syntax for end line (endl) in C++
cout<< statement to be executed <<endl;
Whenever the program is writing the output data to the stream, all the data will not be written to the terminal at once. Instead, it will be written to the buffer until enough data is collected in the buffer to output to the terminal. But if are using flush in our program, the entire output data will be flushed to the terminal directly without storing anything in the buffer. Whenever there is a need to insert the new line character to display the output in the next line while flushing the stream, we can make use of endl in C++. Whenever there is a need to insert the new line character to display the output in the next line, we can make use of endl in '\n' character but it does not do the job of flushing the stream. So if we want to insert a new line character along with flushing the stream, we make use of endl in C++. Whenever the program is writing the output data to the stream, all the data will not be written to the terminal at once. Instead, it will be written to the buffer until enough data is collected in the buffer to output to the terminal. • It is a manipulator. • It doesn't occupy any memory. • It is a keyword and would not specify any meaning when stored in a string. • We cannot write 'endl' in between double quotations. • It is only supported by C++. • It keeps flushing the queue in the output buffer throughout the process.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Standard end line (endl) in C++ language */ //The header file iostream is imported to enable us to use cout in the program #include <iostream> //a namespace called std is defined using namespace std; //main method is called int main( ) { //cout is used to output the statement cout<< "Welcome to "; //cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream cout<< "C#"<<endl; //cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream cout<< "Learning is fun"<<endl; }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Goto Statement in C++
In C++, goto is a jump statement and sometimes also referred as unconditional jump statement. It can be used to jump from goto to a labeled statement within the same function. The target label must be within the same file and context. Please note that the use of goto statement is highly discouraged in any programming language because it makes difficult to trace the control flow of a program, making hard to understand and modify the program.
Syntax for Goto Statement in C++
goto label; ... ... ... label: statement;
label
the destination statement • The use of goto statement is highly discouraged as it makes the program logic very complex. • use of goto makes the task of analyzing and verifying the correctness of programs (particularly those involving loops) very difficult. • Use of goto can be simply avoided using break and continue statements.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* In C++ programming, the goto statement is used for altering the normal sequence of program execution by transferring control to some other part of the program. */ // This program calculates the average of numbers entered by the user. // If the user enters a negative number, it ignores the number and // calculates the average number entered before it. # include <iostream> using namespace std; int main() { float num, average, sum = 0.0; int i, n; cout << "Maximum number of inputs: "; cin >> n; for(i = 1; i <= n; ++i) { cout << "Enter n" << i << ": "; cin >> num; if(num < 0.0) { // Control of the program move to jump: goto jump; } sum += num; } jump: average = sum / (i - 1); cout << "\nAverage = " << average; return 0; }
Assignment Operators in C++
As the name already suggests, these operators help in assigning values to variables. These operators help us in allocating a particular value to the operands. The main simple assignment operator is '='. We have to be sure that both the left and right sides of the operator must have the same data type. We have different levels of operators. Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Assignment operators are used to assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error. */ // C++ program to demonstrate working of Assignment operators #include <iostream> using namespace std; int main() { // Assigning value 10 to a // using "=" operator int a = 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by adding 10 to a // using "+=" operator a += 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by subtracting 10 from a // using "-=" operator a -= 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by multiplying 10 to a // using "*=" operator a *= 10; cout << "Value of a is "<<a<<"\n"; // Assigning value by dividing 10 from a // using "/=" operator a /= 10; cout << "Value of a is "<<a<<"\n"; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }
If Else If Ladder in C/C++
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax of if...else Ladder in C++
if (Condition1) { Statement1; } else if(Condition2) { Statement2; } . . . else if(ConditionN) { StatementN; } else { Default_Statement; }
In the above syntax of if-else-if, if the Condition1 is TRUE then the Statement1 will be executed and control goes to next statement in the program following if-else-if ladder. If Condition1 is FALSE then Condition2 will be checked, if Condition2 is TRUE then Statement2 will be executed and control goes to next statement in the program following if-else-if ladder. Similarly, if Condition2 is FALSE then next condition will be checked and the process continues. If all the conditions in the if-else-if ladder are evaluated to FALSE, then Default_Statement will be executed.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* write a C program which demonstrate use of if-else-if ladder statement */ /* Program to Print Day Names using Else If Ladder in C++*/ #include <iostream> using namespace std; int main() { int day; cout << "Enter Day Number: "; cin >> day; cout << "Day is "; if (day == 1) cout << "Sunday" << endl; else if (day == 2) cout << "Monday" << endl; else if (day == 3) cout << "Tuesday" << endl; else if (day == 4) cout << "Wednesday" << endl; else if (day == 5) cout << "Thursday" << endl; else if (day == 6) cout << "Friday" << endl; else cout << "Saturday" << endl; return 0; }
system() Function in C++
Execute system command. Invokes the command processor to execute a command. If command is a null pointer, the function only checks whether a command processor is available through this function, without invoking any command. The effects of invoking a command depend on the system and library implementation, and may cause a program to behave in a non-standard manner or to terminate.
Syntax for system() Function in C++
#include <cstdlib> int system (const char* command);
command
C-string containing the system command to be executed. Or, alternatively, a null pointer, to check for a command processor. If command is a null pointer, the function returns a non-zero value in case a command processor is available and a zero value if it is not. If command is not a null pointer, the value returned depends on the system and library implementations, but it is generally expected to be the status code returned by the called command, if supported.
Data races
The function accesses the array pointed by command. Concurrently calling this function with a null pointer as argument is safe. Otherwise, it depends on the system and library implementation.
Exceptions
No-throw guarantee: this function does not throw exceptions. If command is not a null pointer, it causes undefined behavior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* The system() function is a part of the C/C++ standard library. It is used to pass the commands that can be executed in the command processor or the terminal of the operating system, and finally returns the command after it has been completed. */ /* Execute system command by system() function code example */ // A C++ program that compiles and runs another C++ program #include <bits/stdc++.h> using namespace std; int main () { char filename[100]; cout << "Enter file name to compile "; cin.getline(filename, 100); // Build command to execute. For example if the input // file name is a.cpp, then str holds "gcc -o a.out a.cpp" // Here -o is used to specify executable file name string str = "gcc "; str = str + " -o a.out " + filename; // Convert string to const char * as system requires // parameter of type const char * const char *command = str.c_str(); cout << "Compiling file using " << command << endl; system(command); cout << "\nRunning file "; system("./a.out"); return 0; }


Program sample takes the values of two large numbers as input and displays the computed value node with node in the resultant Linked List. Result of "subtraction" for two numbers
Merge-Sort is based on an algorithmic design pattern called Divide & Conquer. It forms tree structure. The height of the tree will be log(n) And we merge n element at every level of the