# C++ Programming Code Examples

## Learn C++ Language

### Relational Operators in C++ Programming Language

**Relational Operators in C++**

==

Equal To Operator (==) is used to compare both operands and returns 1 if both are equal or the same, and 0 represents the operands that are not equal.
The equal to == operator returns
true - if both the operands are equal or the same
false - if the operands are unequal
int x = 10;
int y = 15;
int z = 10;
x == y // false
x == z // true
The relational operator == is not the same as the assignment operator =. The assignment operator = assigns a value to a variable, constant, array, or vector. It does not compare two operands.
!=

Not Equal To Operator (!=) is the opposite of the Equal To Operator and is represented as the (!=) operator. The Not Equal To Operator compares two operands and returns 1 if both operands are not the same; otherwise, it returns 0.
The not equal to != operator returns
true - if both operands are unequal
false - if both operands are equal.
int x = 10;
int y = 15;
int z = 10;
x != y // true
x != z // false
>

Greater than Operator (>) checks the value of the left operand is greater than the right operand, and if the statement is true, the operator is said to be the Greater Than Operator.
The greater than > operator returns
true - if the left operand is greater than the right
false - if the left operand is less than the right
int x = 10;
int y = 15;
x > y // false
y > x // true
<

Less than Operator (<) is used to check whether the value of the left operand is less than the right operand, and if the statement is true, the operator is known as the Less than Operator.
The less than operator < returns
true - if the left operand is less than the right
false - if the left operand is greater than right
int x = 10;
int y = 15;
x < y // true
y < x // false
>=

Greater than Equal To Operator (>=) checks whether the left operand's value is greater than or equal to the right operand. If the statement is true, the operator is said to be the Greater than Equal to Operator.
The greater than or equal to >= operator returns
true - if the left operand is either greater than or equal to the right
false - if the left operand is less than the right
int x = 10;
int y = 15;
int z = 10;
x >= y // false
y >= x // true
z >= x // true
<=

Less than Equal To Operator (<=) checks whether the value of the left operand is less than or equal to the right operand, and if the statement is true, the operator is said to be the Less than Equal To Operator.
The less than or equal to operator <= returns
true - if the left operand is either less than or equal to the right
false - if the left operand is greater than right
int x = 10;
int y = 15;
x > y // false
y > x // true
/* Relational Operators are used for the comparison of the values of two operands. For example, checking if one operand is equal to the other operand or not, an operand is greater than the other operand or not, etc. Some of the relational operators are (==, >= , <= ). */
#include <iostream>
using namespace std;
main() {
int a = 21;
int b = 10;
int c ;
if( a == b ) {
cout << "Line 1 - a is equal to b" << endl ;
} else {
cout << "Line 1 - a is not equal to b" << endl ;
}
if( a < b ) {
cout << "Line 2 - a is less than b" << endl ;
} else {
cout << "Line 2 - a is not less than b" << endl ;
}
if( a > b ) {
cout << "Line 3 - a is greater than b" << endl ;
} else {
cout << "Line 3 - a is not greater than b" << endl ;
}
/* Let's change the values of a and b */
a = 5;
b = 20;
if( a <= b ) {
cout << "Line 4 - a is either less than \ or equal to b" << endl ;
}
if( b >= a ) {
cout << "Line 5 - b is either greater than \ or equal to b" << endl ;
}
return 0;
}

We have a function 'printStudentInfo()' which takes structure Student as an 'argument' and 'prints the details' of student using structure varaible. The important point to note here is

Program takes a Positive integer & Calculates the factorial of the number. First user enter 6 then, Factorial will be equal to '1*2*3*4*5*6' 720. Learn to Find the "Factorial" of a number

Program to finds the volume of tetrahedron. Call the four vertices of the tetrahedron (a, b, c), (d, e, f), (g, h, i), and (p, q, r). Now create a 4-by-4 matrix in which the coordinate triples