C++ Programming Code Examples
C++ > Mathematics Code Examples
Program to find your Day of Birth given Date of Birth
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/* Program to find your Day of Birth given Date of Birth */
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
main()
{
clrscr();
int d,m,y,year,month,day,i,n;
printf("Enter how many times you want to run this program : ");
scanf("%d",&n);
for(i=1;i<=n;i++)
{
printf("
Enter the date : ");
scanf("%d%d%d",&d,&m,&y);
if( d>31 || m>12 || (y<1900 || y>=2000) )
{
printf("
INVALID INPUT
");
getch();
exit(0);
}
year = y-1900;
year = year/4;
year = year+y-1900;
switch(m)
{
case 1:
case 10:
month = 1;
break;
case 2:
case 3:
case 11:
month = 4;
break;
case 7:
case 4:
month = 0;
break;
case 5:
month = 2;
break;
case 6:
month = 5;
break;
case 8:
month = 3;
break;
case 9:
case 12:
month = 6;
break;
}
year = year+month;
year = year+d;
day = year%7;
switch(day)
{
case 0:
printf("
Day is SATURDAY
");
break;
case 1:
printf("
Day is SUNDAY
");
break;
case 2:
printf("
Day is MONDAY
");
break;
case 3:
printf("
Day is TUESDAY
");
break;
case 4:
printf("
Day is WEDNESDAY
");
break;
case 5:
printf("
Day is THURSDAY
");
break;
case 6:
printf("
Day is FRIDAY
");
break;
}
}
getch();
return 0;
}
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main()
{
............
............
}
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
1) It cannot be used anywhere in the program
a) in particular, it cannot be called recursively
b) its address cannot be taken
2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace).
3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static.
4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;.
5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program).
6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed).
7) (since C++20) The main function cannot be a coroutine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* simple code example by main() function in C++ */
#include <iostream>
using namespace std;
int main() {
int day = 4;
switch (day) {
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;
}
return 0;
}
If Else Statement in C++
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++:
• if statement,
• if...else statement,
• if...else if...else statement,
Syntax for If Statement in C++
if (condition) {
// body of if statement
}
Syntax for If...Else Statement
if (condition) {
// block of code if condition is true
}
else {
// block of code if condition is false
}
Syntax for If...Else...Else If Statement in C++
if (condition1) {
// code block 1
}
else if (condition2){
// code block 2
}
else {
// code block 3
}
Syntax for If Else If Ladder in C++
if (condition)
statement 1;
else if (condition)
statement 2;
.
.
else
statement;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* If Else Statement in C++ Language */
#include <iostream>
using namespace std;
int main () {
// local variable declaration:
int a = 100;
// check the boolean condition
if( a < 20 ) {
// if condition is true then print the following
cout << "a is less than 20;" << endl;
} else {
// if condition is false then print the following
cout << "a is not less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
return 0;
}
clrscr() Function in C++
It is a predefined function in "conio.h" (console input output header file) used to clear the console screen. It is a predefined function, by using this function we can clear the data from console (Monitor). Using of clrscr() is always optional but it should be place after variable or function declaration only.
It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* clrscr() function is also a non-standard function defined in "conio.h" header. This function is used to clear the console screen. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.*/
#include<iostream.h>
#include<conio.h>
void main()
{
int a=10, b=20;
int sum=0;
clrscr(); // use clrscr() after variable declaration
sum=a+b;
cout<<"Sum: "<<sum;
//clear the console screen
clrscr();
getch();
}
exit() Function in C++
The exit function terminates the program normally. Automatic objects are not destroyed, but static objects are. Then, all functions registered with atexit are called in the opposite order of registration. The code is returned to the operating system. An exit code of 0 or EXIT_SUCCESS means successful completion. If code is EXIT_FAILURE, an indication of program failure is returned to the operating system. Other values of code are implementation-defined.
Syntax for exit() Function in C++
void exit (int status);
status
Status code. If this is 0 or EXIT_SUCCESS, it indicates success. If it is EXIT_FAILURE, it indicates failure.
Calls all functions registered with the atexit() function, and destroys C++ objects with static storage duration, all in last-in-first-out (LIFO) order. C++ objects with static storage duration are destroyed in the reverse order of the completion of their constructor. (Automatic objects are not destroyed as a result of calling exit().)
Functions registered with atexit() are called in the reverse order of their registration. A function registered with atexit(), before an object obj1 of static storage duration is initialized, will not be called until obj1's destruction has completed. A function registered with atexit(), after an object obj2 of static storage duration is initialized, will be called before obj2's destruction starts.
Normal program termination performs the following (in the same order):
• Objects associated with the current thread with thread storage duration are destroyed (C++11 only).
• Objects with static storage duration are destroyed (C++) and functions registered with atexit are called.
• All C streams (open with functions in <cstdio>) are closed (and flushed, if buffered), and all files created with tmpfile are removed.
• Control is returned to the host environment.
Note that objects with automatic storage are not destroyed by calling exit (C++).
If status is zero or EXIT_SUCCESS, a successful termination status is returned to the host environment.
If status is EXIT_FAILURE, an unsuccessful termination status is returned to the host environment.
Otherwise, the status returned depends on the system and library implementation.
Flushes all buffers, and closes all open files.
All files opened with tmpfile() are deleted.
Returns control to the host environment from the program.
exit() returns no values.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* terminate the process normally, performing the regular cleanup for terminating programs by exit() function code example */
#include<iostream>
using namespace std;
int main()
{
int i;
cout<<"Enter a non-zero value: "; //user input
cin>>i;
if(i) // checks whether the user input is non-zero or not
{
cout<<"Valid input.\n";
}
else
{
cout<<"ERROR!"; //the program exists if the value is 0
exit(0);
}
cout<<"The input was : "<<i;
}
Switch Case Statement in C++
Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case match is found, a block of statements associated with that particular case is executed.
Each case in a block of a switch has a different name/number which is referred to as an identifier. The value provided by the user is compared with all the cases inside the switch block until the match is found.
If a case match is NOT found, then the default statement is executed, and the control goes out of the switch block.
Syntax for Switch Case Statement in C++
switch( expression )
{
case value-1:
Block-1;
Break;
case value-2:
Block-2;
Break;
case value-n:
Block-n;
Break;
default:
Block-1;
Break;
}
Statement-x;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/* the switch statement helps in testing the equality of a variable against a set of values */
#include <iostream>
using namespace std;
int main () {
// local variable declaration:
char grade = 'D';
switch(grade) {
case 'A' :
cout << "Excellent!" << endl;
break;
case 'B' :
case 'C' :
cout << "Well done" << endl;
break;
case 'D' :
cout << "You passed" << endl;
break;
case 'F' :
cout << "Better try again" << endl;
break;
default :
cout << "Invalid grade" << endl;
}
cout << "Your grade is " << grade << endl;
return 0;
}
getch() Function in C++
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C++
#include <conio.h>
int getch(void);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* wait for any character input from keyboard by getch() function code example. The getch() function is very useful if you want to read a character input from the keyboard. */
// C code to illustrate working of
// getch() to accept hidden inputs
#include<iostream.h>
#include<conio.h>
void main()
{
int a=10, b=20;
int sum=0;
clrscr();
sum=a+b;
cout<<"Sum: "<<sum;
getch(); // use getch() befor end of main()
}
Arithmetic Operators in C++
Arithmetic Operator is used to performing mathematical operations such as addition, subtraction, multiplication, division, modulus, etc., on the given operands. For example: 6 + 3 = 9, 5 - 3 = 2, 3 * 4 = 12, etc. are the examples of arithmetic operators. Let's discuss the different types of Arithmetic Operators in the C programming.
+
Plus Operator is a simple Plus (+) Operator used to add two given operands. We can use Plus Operator with different data types such as integer, float, long, double, enumerated and string type data to add the given operand.
-
The minus operator is denoted by the minus (-) symbol. It is used to return the subtraction of the first number from the second number. The data type of the given number can be different types, such as int, float, double, long double, etc., in the programing language.
*
The multiplication operator is represented as an asterisk (*) symbol, and it is used to return the product of n1 and n2 numbers. The data type of the given number can be different types such as int, float, and double in the C programing language.
/
The division operator is an arithmetic operator that divides the first (n1) by the second (n2) number. Using division operator (/), we can divide the int, float, double and long data types variables.
%
The modulus operator is represented by the percentage sign (%), and it is used to return the remainder by dividing the first number by the second number.
++
Increment Operator is the type of Arithmetic operator, which is denoted by double plus (++) operator. It is used to increase the integer value by 1.
--
Decrement Operator is denoted by the double minus (--) symbol, which decreases the operand value by 1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* Perhaps you have warm memories of doing arithmetic drills in grade school. You can give that same pleasure to your computer. C++ uses operators to do arithmetic. It provides operators for five basic arithmetic calculations: addition, subtraction, multiplication, division, and taking the modulus. Each of these operators uses two values (called operands) to calculate a final answer. Together, the operator and its operands constitute an expression. */
#include <iostream>
using namespace std;
int main() {
int a, b;
a = 7;
b = 2;
// printing the sum of a and b
cout << "a + b = " << (a + b) << endl;
// printing the difference of a and b
cout << "a - b = " << (a - b) << endl;
// printing the product of a and b
cout << "a * b = " << (a * b) << endl;
// printing the division of a by b
cout << "a / b = " << (a / b) << endl;
// printing the modulo of a by b
cout << "a % b = " << (a % b) << endl;
return 0;
}
Logical Operators in C++
Logical Operators are used to compare and connect two or more expressions or variables, such that the value of the expression is completely dependent on the original expression or value or variable.
We use logical operators to check whether an expression is true or false. If the expression is true, it returns 1 whereas if the expression is false, it returns 0.
Assume variable A holds 1 and variable B holds 0:
&&
Called Logical AND operator. If both the operands are non-zero, then condition becomes true. (A && B) is false.
The logical AND operator && returns
true - if and only if all the operands are true.
false - if one or more operands are false.
||
Called Logical OR Operator. If any of the two operands is non-zero, then condition becomes true. (A || B) is true.
The logical OR operator || returns
true - if one or more of the operands are true.
false - if and only if all the operands are false.
!
Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true, then Logical NOT operator will make false. !(A && B) is true.
The logical NOT operator ! is a unary operator i.e. it takes only one operand.
It returns true when the operand is false, and false when the operand is true.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/* The operator ! is the C++ operator for the Boolean operation NOT. It has only one operand, to its right, and inverts it, producing false if its operand is true, and true if its operand is false. Basically, it returns the opposite Boolean value of evaluating its operand.
The logical operators && and || are used when evaluating two expressions to obtain a single relational result. The operator && corresponds to the Boolean logical operation AND, which yields true if both its operands are true, and false otherwise. */
#include <iostream>
using namespace std;
main() {
int a = 5;
int b = 20;
int c ;
if(a && b) {
cout << "Line 1 - Condition is true"<< endl ;
}
if(a || b) {
cout << "Line 2 - Condition is true"<< endl ;
}
/* Let's change the values of a and b */
a = 0;
b = 10;
if(a && b) {
cout << "Line 3 - Condition is true"<< endl ;
} else {
cout << "Line 4 - Condition is not true"<< endl ;
}
if(!(a && b)) {
cout << "Line 5 - Condition is true"<< endl ;
}
return 0;
}
Break Statement in C++
Break statement in C++ is a loop control statement defined using the break keyword. It is used to stop the current execution and proceed with the next one. When a compiler calls the break statement, it immediately stops the execution of the loop and transfers the control outside the loop and executes the other statements. In the case of a nested loop, break the statement stops the execution of the inner loop and proceeds with the outer loop. The statement itself says it breaks the loop. When the break statement is called in the program, it immediately terminates the loop and transfers the flow control to the statement mentioned outside the loop.
Syntax for Break Statement in C++
// jump-statement;
break;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* break statement with while loop code example */
// program to find the sum of positive numbers
// if the user enters a negative numbers, break ends the loop
// the negative number entered is not added to sum
#include <iostream>
using namespace std;
int main() {
int number;
int sum = 0;
while (true) {
// take input from the user
cout << "Enter a number: ";
cin >> number;
// break condition
if (number < 0) {
break;
}
// add all positive numbers
sum += number;
}
// display the sum
cout << "The sum is " << sum << endl;
return 0;
}
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* using #include directive in C language */
#include <stdio.h>
int main()
{
/*
* C standard library printf function
* defined in the stdio.h header file
*/
printf("I love you Clementine");
printf("I love you so much");
printf("HappyCodings");
return 0;
}
For Loop Statement in C++
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Syntax of For Loop Statement in C++
for (initialization; condition; update) {
// body of-loop
}
initialization
initializes variables and is executed only once.
condition
if true, the body of for loop is executed, if false, the for loop is terminated.
update
updates the value of initialized variables and again checks the condition.
A new range-based for loop was introduced to work with collections such as arrays and vectors.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* For Loop Statement in C++ Language */
// C++ program to find the sum of first n natural numbers
// positive integers such as 1,2,3,...n are known as natural numbers
#include <iostream>
using namespace std;
int main() {
int num, sum;
sum = 0;
cout << "Enter a positive integer: ";
cin >> num;
for (int i = 1; i <= num; ++i) {
sum += i;
}
cout << "Sum = " << sum << endl;
return 0;
}
"Switch statement" is multi-way decision that tests whether an expression 'matches' one of a number of "constant integer", and branches accordingly. 'Switch statement' that allows us
'Insert substring' in a string. 'Erase substring' from a string. 'Append substring' to a string. Replace the string with a substrng. Size of a string. Find substring in a string. Display the