Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C++ Programming Code Examples

C++ > Mathematics Code Examples

Program to solve a 3 Variable Linear Equation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* Program to solve a 3 Variable Linear Equation */ #include<stdio.h> #include<conio.h> #include<stdlib.h> main() { clrscr(); float a,b,c,d,l,m,n,k,p,D,q,r,s,x,y,z; printf("PROGRAM TO SOLVE THREE VARIABLE LINEAR SIMULTANEOUS EQUATIONS "); printf("The equations are of the form: ax+by+cz+d=0 lx+my+nz+k=0 px+qy+rz+s=0 "); printf("Enter the coefficients in the order a,b,c,d,l,m,n,k,p,q,r,s "); scanf("%f%f%f%f%f%f%f%f%f%f%f%f",&a,&b,&c,&d,&l,&m,&n,&k,&p,&q,&r,&s); printf(" The equations you have input are: "); printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0 ",a,b,c,d); printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0 ",l,m,n,k); printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0 ",p,q,r,s); D = (a*m*r+b*p*n+c*l*q)-(a*n*q+b*l*r+c*m*p); x = ((b*r*k+c*m*s+d*n*q)-(b*n*s+c*q*k+d*m*r))/D; y = ((a*n*s+c*p*k+d*l*r)-(a*r*k+c*l*s+d*n*p))/D; z = ((a*q*k+b*l*s+d*m*p)-(a*m*s+b*p*k+d*l*q))/D; printf("The solutions to the above three equations are : "); printf(" x = %5.2f y = %5.2f z = %5.2f ",x,y,z); getch(); return 0; }
Comments in C++
The C++ comments are statements that are not executed by the compiler. The comments in C++ programming can be used to provide explanation of the code, variable, method or class. If we write comments on our code, it will be easier for us to understand the code in the future. Also, it will be easier for your fellow developers to understand the code. By the help of comments, you can hide the program code also. There are two types of comments in C++: • Single Line comment • Multi Line comment
Syntax for Single Line Comment in C++
/* This is a comment */
The single line comment starts with // (double slash).
Syntax for Multi Line Comment in C++
/* C++ comments can also * span multiple lines */
C++ multi line comment is used to comment multiple lines of code. It is surrounded by slash and asterisk (/* ..... */). Comments shouldn't be the substitute for a way to explain poorly written code in English. We should always write well-structured and self-explanatory code. And, then use comments.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* program to illustrate use comments in C++ language */ #include <ostream> using namespace std; int main() { int x = 11; // x is a variable cout<<x<<"\n"; /* declare and print variable in C++ */ int x = 35; cout<<x<<"\n"; // This is a comment cout << "Hello World!"; /* Multi-line Comments in C++ */ }
getch() Function in C++
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C++
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* wait for any character input from keyboard by getch() function code example. The getch() function is very useful if you want to read a character input from the keyboard. */ // C code to illustrate working of // getch() to accept hidden inputs #include<iostream.h> #include<conio.h> void main() { int a=10, b=20; int sum=0; clrscr(); sum=a+b; cout<<"Sum: "<<sum; getch(); // use getch() befor end of main() }
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories. Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor. • In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is treated as filename. • In #include directive, backslash is considered as normal text not escape sequence. So in case of #include <a\nb>, a\nb is treated as filename. • You can use only comment after filename otherwise it will give error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* using #include directive in C language */ #include <stdio.h> int main() { /* * C standard library printf function * defined in the stdio.h header file */ printf("I love you Clementine"); printf("I love you so much"); printf("HappyCodings"); return 0; }
Return Statement in C++
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression. If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message. If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
Syntax for Return Statement in C++
return[expression];
For a function of return type void, a return statement is not strictly necessary. If the end of such a function is reached without encountering a return statement, control is passed to the caller as if a return statement without an expression were encountered. In other words, an implicit return takes place upon completion of the final statement, and control automatically returns to the calling function. If a return statement is used, it must not contain an expression. The following are examples of return statements:
return; /* Returns no value */ return result; /* Returns the value of result */ return 1; /* Returns the value 1 */ return (x * x); /* Returns the value of x * x */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* illustrate Methods returning a value using return statement in C++ code example */ #include <iostream> using namespace std; // non-void return type // function to calculate sum int SUM(int a, int b) { int s1 = a + b; // method using the return // statement to return a value return s1; } // Driver method int main() { int num1 = 10; int num2 = 10; int sum_of = SUM(num1, num2); cout << "The sum is " << sum_of; return 0; }
clrscr() Function in C++
It is a predefined function in "conio.h" (console input output header file) used to clear the console screen. It is a predefined function, by using this function we can clear the data from console (Monitor). Using of clrscr() is always optional but it should be place after variable or function declaration only. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* clrscr() function is also a non-standard function defined in "conio.h" header. This function is used to clear the console screen. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.*/ #include<iostream.h> #include<conio.h> void main() { int a=10, b=20; int sum=0; clrscr(); // use clrscr() after variable declaration sum=a+b; cout<<"Sum: "<<sum; //clear the console screen clrscr(); getch(); }
Arithmetic Operators in C++
Arithmetic Operator is used to performing mathematical operations such as addition, subtraction, multiplication, division, modulus, etc., on the given operands. For example: 6 + 3 = 9, 5 - 3 = 2, 3 * 4 = 12, etc. are the examples of arithmetic operators. Let's discuss the different types of Arithmetic Operators in the C programming.
+
Plus Operator is a simple Plus (+) Operator used to add two given operands. We can use Plus Operator with different data types such as integer, float, long, double, enumerated and string type data to add the given operand.
-
The minus operator is denoted by the minus (-) symbol. It is used to return the subtraction of the first number from the second number. The data type of the given number can be different types, such as int, float, double, long double, etc., in the programing language.
*
The multiplication operator is represented as an asterisk (*) symbol, and it is used to return the product of n1 and n2 numbers. The data type of the given number can be different types such as int, float, and double in the C programing language.
/
The division operator is an arithmetic operator that divides the first (n1) by the second (n2) number. Using division operator (/), we can divide the int, float, double and long data types variables.
%
The modulus operator is represented by the percentage sign (%), and it is used to return the remainder by dividing the first number by the second number.
++
Increment Operator is the type of Arithmetic operator, which is denoted by double plus (++) operator. It is used to increase the integer value by 1.
--
Decrement Operator is denoted by the double minus (--) symbol, which decreases the operand value by 1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Perhaps you have warm memories of doing arithmetic drills in grade school. You can give that same pleasure to your computer. C++ uses operators to do arithmetic. It provides operators for five basic arithmetic calculations: addition, subtraction, multiplication, division, and taking the modulus. Each of these operators uses two values (called operands) to calculate a final answer. Together, the operator and its operands constitute an expression. */ #include <iostream> using namespace std; int main() { int a, b; a = 7; b = 2; // printing the sum of a and b cout << "a + b = " << (a + b) << endl; // printing the difference of a and b cout << "a - b = " << (a - b) << endl; // printing the product of a and b cout << "a * b = " << (a * b) << endl; // printing the division of a by b cout << "a / b = " << (a / b) << endl; // printing the modulo of a by b cout << "a % b = " << (a % b) << endl; return 0; }
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main() { ............ ............ }
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library. In place of void we can also use int return type of main() function, at that time main() return integer type value. 1) It cannot be used anywhere in the program a) in particular, it cannot be called recursively b) its address cannot be taken 2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace). 3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static. 4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;. 5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program). 6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed). 7) (since C++20) The main function cannot be a coroutine.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* simple code example by main() function in C++ */ #include <iostream> using namespace std; int main() { int day = 4; switch (day) { case 1: cout << "Monday"; break; case 2: cout << "Tuesday"; break; case 3: cout << "Wednesday"; break; case 4: cout << "Thursday"; break; case 5: cout << "Friday"; break; case 6: cout << "Saturday"; break; case 7: cout << "Sunday"; break; } return 0; }


A B+ tree is an n-ary tree with a variable but often large number of "children per node". A B+ tree consists of a root, internal nodes and leaves. The root may be either a leaf or node
Two functions in this method. One is to print all nodes at a given level ("printGivenLevel"), and other is to "print level order traversal" of the tree ("printLevelorder"). printLevelorder
In this example, 'frequency of characters' in a String object is computed. To do this, "size()" function is used to find the Length of a string object. Then, the for loop is iterated until the
Program should display all 'random elements' of array and minimum and maximum number in array on screen. Array size is fixed to 100 to change the size just change the 'Value of size'
Internal method to test if a positive number is prime. Not an efficient algorithm and Internal method to return a 'prime number' at least as large as n. Assumes "n > 0". Insert item x into