C++ Programming Code Examples
C++ > Pointers Code Examples
Print size of different types Using Pointer in C++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* Print size of different types Using Pointer in C++ */
/* Simple Program for Print size of different types Using Pointer in C++*/
/* Print Pointer Address C++ Program,C++ Pointer Examples */
// Header Files
#include <iostream>
#include<conio.h>
using namespace std;
int main() {
// Declare Variables
int a = 8;
int *pa = &a;
char b = 'x';
char *pb = &b;
float c = 8.01;
float *pc = &c;
double d = 8.01;
double *pd = &d;
long e = 8.01;
long *pe = &e;
cout << "Pointer C++ Example Program : Print Size of Different types Using sizeof\n";
cout << "\n[sizeof(a) ]: = " << sizeof (a);
cout << "\n[sizeof(*pa) ]: = " << sizeof (*pa);
cout << "\n[sizeof(b) ]: = " << sizeof (b);
cout << "\n[sizeof(*pb) ]: = " << sizeof (*pb);
cout << "\n[sizeof(c) ]: = " << sizeof (c);
cout << "\n[sizeof(*pc) ]: = " << sizeof (*pc);
cout << "\n[sizeof(d) ]: = " << sizeof (d);
cout << "\n[sizeof(*pd) ]: = " << sizeof (*pd);
cout << "\n[sizeof(e) ]: = " << sizeof (e);
cout << "\n[sizeof(*pe) ]: = " << sizeof (*pe);
return 0;
}
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* using #include directive in C language */
#include <stdio.h>
int main()
{
/*
* C standard library printf function
* defined in the stdio.h header file
*/
printf("I love you Clementine");
printf("I love you so much");
printf("HappyCodings");
return 0;
}
Assignment Operators in C++
As the name already suggests, these operators help in assigning values to variables. These operators help us in allocating a particular value to the operands. The main simple assignment operator is '='. We have to be sure that both the left and right sides of the operator must have the same data type. We have different levels of operators.
Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/* Assignment operators are used to assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error. */
// C++ program to demonstrate working of Assignment operators
#include <iostream>
using namespace std;
int main()
{
// Assigning value 10 to a
// using "=" operator
int a = 10;
cout << "Value of a is "<<a<<"\n";
// Assigning value by adding 10 to a
// using "+=" operator
a += 10;
cout << "Value of a is "<<a<<"\n";
// Assigning value by subtracting 10 from a
// using "-=" operator
a -= 10;
cout << "Value of a is "<<a<<"\n";
// Assigning value by multiplying 10 to a
// using "*=" operator
a *= 10;
cout << "Value of a is "<<a<<"\n";
// Assigning value by dividing 10 from a
// using "/=" operator
a /= 10;
cout << "Value of a is "<<a<<"\n";
return 0;
}
IOS Library eof() Function in C++
Check whether eofbit is set. Returns true if the eofbit error state flag is set for the stream. This flag is set by all standard input operations when the End-of-File is reached in the sequence associated with the stream.
Note that the value returned by this function depends on the last operation performed on the stream (and not on the next).
Operations that attempt to read at the End-of-File fail, and thus both the eofbit and the failbit end up set. This function can be used to check whether the failure is due to reaching the End-of-File or to some other reason.
Syntax for IOS eof() Function in C++
bool eof() const;
Data races
Accesses the stream object. Concurrent access to the same stream object may cause data races.
Exception safety
Strong guarantee: if an exception is thrown, there are no changes in the stream.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/* The eof() method of ios class in C++ is used to check if the stream is has raised any EOF (End Of File) error. It means that this function will check if this stream has its eofbit set. */
// C++ code example to demonstrate the working of eof() function
#include <iostream>
#include <fstream>
int main () {
std::ifstream is("example.txt");
char c;
while (is.get(c))
std::cout << c;
if (is.eof())
std::cout << "[EoF reached]\n";
else
std::cout << "[error reading]\n";
is.close();
return 0;
}
sizeof() Operator in C++
The sizeof() is an operator that evaluates the size of data type, constants, variable. It is a compile-time operator as it returns the size of any variable or a constant at the compilation time. The size, which is calculated by the sizeof() operator, is the amount of RAM occupied in the computer.
The sizeof is a keyword, but it is a compile-time operator that determines the size, in bytes, of a variable or data type. The sizeof operator can be used to get the size of classes, structures, unions and any other user defined data type.
Syntax for sizeof() Operator in C++
sizeof(data_type);
data_type
data type whose size is to be calculated
The data_type can be the data type of the data, variables, constants, unions, structures, or any other user-defined data type.
If the parameter of a sizeof() operator contains the data type of a variable, then the sizeof() operator will return the size of the data type.
sizeof() may give different output according to machine, we have run our program on 32 bit gcc compiler.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* The sizeof() is an operator in C and C++. It is an unary operator which assists a programmer in finding the size of the operand which is being used. */
#include <iostream>
using namespace std;
int main() {
int arr[]={10,20,30,40,50};
std::cout << "Size of the array 'arr' is : "<<sizeof(arr) << std::endl;
cout << "Size of char : " << sizeof(char) << endl;
cout << "Size of int : " << sizeof(int) << endl;
cout << "Size of short int : " << sizeof(short int) << endl;
cout << "Size of long int : " << sizeof(long int) << endl;
cout << "Size of float : " << sizeof(float) << endl;
cout << "Size of double : " << sizeof(double) << endl;
cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;
return 0;
}
Pointers in C++ Language
The pointer in C++ language is a variable, it is also known as locator or indicator that points to an address of a value. In C++, a pointer refers to a variable that holds the address of another variable. Like regular variables, pointers have a data type. For example, a pointer of type integer can hold the address of a variable of type integer. A pointer of character type can hold the address of a variable of character type.
You should see a pointer as a symbolic representation of a memory address. With pointers, programs can simulate call-by-reference. They can also create and manipulate dynamic data structures. In C++, a pointer variable refers to a variable pointing to a specific address in a memory pointed by another variable.
Syntax for Pointers in C++
int *ip; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch // pointer to character
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* pointer is a variable in C++ that holds the address of another variable */
#include <iostream>
using namespace std;
int main () {
int var = 20; // actual variable declaration.
int *ip; // pointer variable
ip = &var; // store address of var in pointer variable
cout << "Value of var variable: ";
cout << var << endl;
// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;
// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;
return 0;
}
Standard Output Stream (cout) in C++
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout.
Syntax for cout in C++
cout << var_name;
//or
cout << "Some String";
<<
is the insertion operator
var_name
is usually a variable, but can also be an array element or elements of containers like vectors, lists, maps, etc.
The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output".
The cout object is used along with the insertion operator << in order to display a stream of characters.
The << operator can be used more than once with a combination of variables, strings, and manipulators.
cout is used for displaying data on the screen. The operator << called as insertion operator or put to operator. The Insertion operator can be overloaded. Insertion operator is similar to the printf() operation in C. cout is the object of ostream class. Data flow direction is from variable to output device. Multiple outputs can be displayed using cout.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* standard output stream (cout) in C++ language */
#include <iostream>
using namespace std;
int main() {
string str = "Do not interrupt me";
char ch = 'm';
// use cout with write()
cout.write(str,6);
cout << endl;
// use cout with put()
cout.put(ch);
return 0;
}
Return Statement in C++
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression.
If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message.
If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
Syntax for Return Statement in C++
return[expression];
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* illustrate Methods returning a value using return statement in C++ code example */
#include <iostream>
using namespace std;
// non-void return type
// function to calculate sum
int SUM(int a, int b)
{
int s1 = a + b;
// method using the return
// statement to return a value
return s1;
}
// Driver method
int main()
{
int num1 = 10;
int num2 = 10;
int sum_of = SUM(num1, num2);
cout << "The sum is " << sum_of;
return 0;
}
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main()
{
............
............
}
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
1) It cannot be used anywhere in the program
a) in particular, it cannot be called recursively
b) its address cannot be taken
2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace).
3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static.
4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;.
5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program).
6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed).
7) (since C++20) The main function cannot be a coroutine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* simple code example by main() function in C++ */
#include <iostream>
using namespace std;
int main() {
int day = 4;
switch (day) {
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;
}
return 0;
}
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc.
Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name {
// code declarations
}
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files.
So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name {
// code declarations
}
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 {
// code declarations
namespace namespace_name2 {
// code declarations
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* namespaces in C++ language */
// A C++ code to demonstrate that we can define
// methods outside namespace.
#include <iostream>
using namespace std;
// Creating a namespace
namespace ns
{
void display();
class happy
{
public:
void display();
};
}
// Defining methods of namespace
void ns::happy::display()
{
cout << "ns::happy::display()\n";
}
void ns::display()
{
cout << "ns::display()\n";
}
// Driver code
int main()
{
ns::happy obj;
ns::display();
obj.display();
return 0;
}
If there exists "Multiple Strongly Connected" component, graph is not strongly connected, it is otherwise. Implementation of Kosaraju's Algorithm to "Print all SCCs". Fills Stack with
For a general weighted graph, we calculate single source shortest distances in "O(VE)" time using 'Bellman-Ford Algorithm'. For a graph with no negative weights, we can do