C++ Programming Code Examples
C++ > Recursion Code Examples
Linear search program in c++ using recursion
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/* Linear search program in c++ using recursion
This program runs linear search recursively in an array c++ code
Program takes size of array
Input elements in array
Passing array, key and size to the recursive function recursiveLinearSearch(int array[],int key, int size)
Recursive function calls it self until certain conditions fulfill
Function returns 1 if record found in array else returns -1 */
#include<iostream>
using namespace std;
int recursiveLinearSearch(int array[],int key,int size){
size=size-1;
if(size <0){
return -1;
}
else if(array[size]==key){
return 1;
}
else{
return recursiveLinearSearch(array,key,size);
}
}
int main() {
cout<<"Enter The Size Of Array: ";
int size;
cin>>size;
int array[size], key,i;
// Taking Input In Array
for(int j=0;j<size;j++){
cout<<"Enter "<<j<<" Element : ";
cin>>array[j];
}
//Your Entered Array Is
for(int a=0;a<size;a++){
cout<<"array[ "<<a<<" ] = ";
cout<<array[a]<<endl;
}
cout<<"Enter Key To Search in Array";
cin>>key;
int result;
result=recursiveLinearSearch(array,key,size--);
if(result==1){
cout<<"Key Found in Array ";
}
else{
cout<<"Key NOT Found in Array ";
}
return 0;
}
Namespaces in C++ Language
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc.
Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
A namespace is designed to overcome this difficulty and is used as additional information to differentiate similar functions, classes, variables etc. with the same name available in different libraries. Using namespace, you can define the context in which names are defined. In essence, a namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by the namespace name as follows:
namespace namespace_name {
// code declarations
}
name::code; // code could be variable or function.
Using Directive
You can also avoid prepending of namespaces with the using namespace directive. This directive tells the compiler that the subsequent code is making use of names in the specified namespace.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up of the sum of its separately defined parts. The separate parts of a namespace can be spread over multiple files.
So, if one part of the namespace requires a name defined in another file, that name must still be declared. Writing a following namespace definition either defines a new namespace or adds new elements to an existing one:
namespace namespace_name {
// code declarations
}
Nested Namespaces
Namespaces can be nested where you can define one namespace inside another name space as follows:
namespace namespace_name1 {
// code declarations
namespace namespace_name2 {
// code declarations
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* namespaces in C++ language */
// A C++ code to demonstrate that we can define
// methods outside namespace.
#include <iostream>
using namespace std;
// Creating a namespace
namespace ns
{
void display();
class happy
{
public:
void display();
};
}
// Defining methods of namespace
void ns::happy::display()
{
cout << "ns::happy::display()\n";
}
void ns::display()
{
cout << "ns::display()\n";
}
// Driver code
int main()
{
ns::happy obj;
ns::display();
obj.display();
return 0;
}
What is an Array in C++ Language
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number.
C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
By using the array, we can access the elements easily. Only a few lines of code are required to access the elements of the array.
Properties of Array
The array contains the following properties.
• Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes.
• Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest memory location.
• Elements of the array can be randomly accessed since we can calculate the address of each element of the array with the given base address and the size of the data element.
Advantage of C++ Array
• 1) Code Optimization: Less code to the access the data.
• 2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily.
• 3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.
• 4) Random Access: We can access any element randomly using the array.
Disadvantage of C++ Array
• 1) Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike a linked list, an array in C++ is not dynamic.
• 2) Insertion and deletion of elements can be costly since the elements are needed to be managed in accordance with the new memory allocation.
Declaration of C++ Array
To declare an array in C++, a programmer specifies the type of the elements and the number of elements required by an array as follows
type arrayName [ arraySize ];
double balance[10];
Initializing Arrays
You can initialize an array in C++ either one by one or using a single statement as follows
double balance[5] = {850, 3.0, 7.4, 7.0, 88};
double balance[] = {850, 3.0, 7.4, 7.0, 88};
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array.
double salary = balance[9];
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/* arrays in C++ Language */
#include <iostream>
using namespace std;
int main() {
// initialize an array without specifying size
double numbers[] = {7, 5, 6, 12, 35, 27};
double sum = 0;
double count = 0;
double average;
cout << "The numbers are: ";
// print array elements
// use of range-based for loop
for (const double &n : numbers) {
cout << n << " ";
// calculate the sum
sum += n;
// count the no. of array elements
++count;
}
// print the sum
cout << "\nTheir Sum = " << sum << endl;
// find the average
average = sum / count;
cout << "Their Average = " << average << endl;
return 0;
}
Algorithm Library search() Function in C++
Search range for subsequence. Searches the range [first1,last1) for the first occurrence of the sequence defined by [first2,last2), and returns an iterator to its first element, or last1 if no occurrences are found.
The elements in both ranges are compared sequentially using operator== (or pred, in version (2)): A subsequence of [first1,last1) is considered a match only when this is true for all the elements of [first2,last2).
This function returns the first of such occurrences. For an algorithm that returns the last instead, see find_end.
Syntax for Algorithm search() Function in C++
#include <algorithm>
//equality (1)
template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search (ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
//predicate (2)
template <class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
ForwardIterator1 search (ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
first1, last1
Forward iterators to the initial and final positions of the searched sequence. The range used is [first1,last1), which contains all the elements between first1 and last1, including the element pointed by first1 but not the element pointed by last1.
first2, last2
Forward iterators to the initial and final positions of the sequence to be searched for. The range used is [first2,last2).
For (1), the elements in both ranges shall be of types comparable using operator== (with the elements of the first range as left-hand side operands, and those of the second as right-hand side operands).
pred
Binary function that accepts two elements as arguments (one of each of the two sequences, in the same order), and returns a value convertible to bool. The returned value indicates whether the elements are considered to match in the context of this function.
The function shall not modify any of its arguments.
This can either be a function pointer or a function object.
Function returns an iterator to the first element of the first occurrence of [first2,last2) in [first1,last1).
If the sequence is not found, the function returns last1.
If [first2,last2) is an empty range, the function returns first1.
Complexity
Up to linear in count1*count2 (where countX is the distance between firstX and lastX): Compares elements until a matching subsequence is found.
Data races
Some (or all) of the objects in both ranges are accessed (possibly more than once).
Exceptions
Throws if any of the element comparisons (or pred) throws or if any of the operations on iterators throws. Note that invalid arguments cause undefined behavior.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* C++ Algorithm search() function searches the range [first1, last1) for the occurrence of a subsequence defined by the range [first2, last2), and an iterator to the first element is returned. If the subsequence does not exist then an iterator to the last1 is returned. */
/* Search range for subsequence by search() function code example */
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int i, j;
// Declaring the sequence to be searched into
vector<int> v1 = { 1, 2, 3, 4, 5, 6, 7 };
// Declaring the subsequence to be searched for
vector<int> v2 = { 3, 4, 5 };
// Declaring an iterator for storing the returning pointer
vector<int>::iterator i1;
// Using std::search and storing the result in
// iterator i1
i1 = std::search(v1.begin(), v1.end(), v2.begin(), v2.end());
// checking if iterator i1 contains end pointer of v1 or not
if (i1 != v1.end()) {
cout << "vector2 is present at index " << (i1 - v1.begin());
} else {
cout << "vector2 is not present in vector1";
}
return 0;
}
Standard Output Stream (cout) in C++
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout.
Syntax for cout in C++
cout << var_name;
//or
cout << "Some String";
<<
is the insertion operator
var_name
is usually a variable, but can also be an array element or elements of containers like vectors, lists, maps, etc.
The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output".
The cout object is used along with the insertion operator << in order to display a stream of characters.
The << operator can be used more than once with a combination of variables, strings, and manipulators.
cout is used for displaying data on the screen. The operator << called as insertion operator or put to operator. The Insertion operator can be overloaded. Insertion operator is similar to the printf() operation in C. cout is the object of ostream class. Data flow direction is from variable to output device. Multiple outputs can be displayed using cout.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* standard output stream (cout) in C++ language */
#include <iostream>
using namespace std;
int main() {
string str = "Do not interrupt me";
char ch = 'm';
// use cout with write()
cout.write(str,6);
cout << endl;
// use cout with put()
cout.put(ch);
return 0;
}
main() Function in C++
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Syntax for main() Function in C++
void main()
{
............
............
}
void
void is a keyword in C++ language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
main
main is a name of function which is predefined function in C++ library.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
1) It cannot be used anywhere in the program
a) in particular, it cannot be called recursively
b) its address cannot be taken
2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global namespace is reserved for functions (although it can be used to name classes, namespaces, enumerations, and any entity in a non-global namespace, except that a function called "main" cannot be declared with C language linkage in any namespace).
3) It cannot be defined as deleted or (since C++11) declared with C language linkage, constexpr (since C++11), consteval (since C++20), inline, or static.
4) The body of the main function does not need to contain the return statement: if control reaches the end of main without encountering a return statement, the effect is that of executing return 0;.
5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to first leaving the function normally (which destroys the objects with automatic storage duration) and then calling std::exit with the same argument as the argument of the return. (std::exit then destroys static objects and terminates the program).
6) (since C++14) The return type of the main function cannot be deduced (auto main() {... is not allowed).
7) (since C++20) The main function cannot be a coroutine.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* simple code example by main() function in C++ */
#include <iostream>
using namespace std;
int main() {
int day = 4;
switch (day) {
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;
}
return 0;
}
Standard end line (endl) in C++
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
Syntax for end line (endl) in C++
cout<< statement to be executed <<endl;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* Standard end line (endl) in C++ language */
//The header file iostream is imported to enable us to use cout in the program
#include <iostream>
//a namespace called std is defined
using namespace std;
//main method is called
int main( )
{
//cout is used to output the statement
cout<< "Welcome to ";
//cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream
cout<< "C#"<<endl;
//cout is used to output the statement along with endl to start the next statement in the new line and flush the output stream
cout<< "Learning is fun"<<endl;
}
#include Directive in C++
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Syntax for #include Directive in C++
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* using #include directive in C language */
#include <stdio.h>
int main()
{
/*
* C standard library printf function
* defined in the stdio.h header file
*/
printf("I love you Clementine");
printf("I love you so much");
printf("HappyCodings");
return 0;
}
If Else If Ladder in C/C++
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements.
In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax of if...else Ladder in C++
if (Condition1)
{ Statement1; }
else if(Condition2)
{ Statement2; }
.
.
.
else if(ConditionN)
{ StatementN; }
else
{ Default_Statement; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* write a C program which demonstrate use of if-else-if ladder statement */
/* Program to Print Day Names using Else If Ladder in C++*/
#include <iostream>
using namespace std;
int main()
{
int day;
cout << "Enter Day Number: ";
cin >> day;
cout << "Day is ";
if (day == 1)
cout << "Sunday" << endl;
else if (day == 2)
cout << "Monday" << endl;
else if (day == 3)
cout << "Tuesday" << endl;
else if (day == 4)
cout << "Wednesday" << endl;
else if (day == 5)
cout << "Thursday" << endl;
else if (day == 6)
cout << "Friday" << endl;
else
cout << "Saturday" << endl;
return 0;
}
If Else Statement in C++
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++:
• if statement,
• if...else statement,
• if...else if...else statement,
Syntax for If Statement in C++
if (condition) {
// body of if statement
}
Syntax for If...Else Statement
if (condition) {
// block of code if condition is true
}
else {
// block of code if condition is false
}
Syntax for If...Else...Else If Statement in C++
if (condition1) {
// code block 1
}
else if (condition2){
// code block 2
}
else {
// code block 3
}
Syntax for If Else If Ladder in C++
if (condition)
statement 1;
else if (condition)
statement 2;
.
.
else
statement;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* If Else Statement in C++ Language */
#include <iostream>
using namespace std;
int main () {
// local variable declaration:
int a = 100;
// check the boolean condition
if( a < 20 ) {
// if condition is true then print the following
cout << "a is less than 20;" << endl;
} else {
// if condition is false then print the following
cout << "a is not less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
return 0;
}
For Loop Statement in C++
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Syntax of For Loop Statement in C++
for (initialization; condition; update) {
// body of-loop
}
initialization
initializes variables and is executed only once.
condition
if true, the body of for loop is executed, if false, the for loop is terminated.
update
updates the value of initialized variables and again checks the condition.
A new range-based for loop was introduced to work with collections such as arrays and vectors.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* For Loop Statement in C++ Language */
// C++ program to find the sum of first n natural numbers
// positive integers such as 1,2,3,...n are known as natural numbers
#include <iostream>
using namespace std;
int main() {
int num, sum;
sum = 0;
cout << "Enter a positive integer: ";
cin >> num;
for (int i = 1; i <= num; ++i) {
sum += i;
}
cout << "Sum = " << sum << endl;
return 0;
}
Standard Input Stream (cin) in C++
The cin object is used to accept input from the standard input device i.e. keyboard. It is defined in the iostream header file. C++ cin statement is the instance of the class istream and is used to read input from the standard input device which is usually a keyboard. The extraction operator(>>) is used along with the object cin for reading inputs. The extraction operator extracts the data from the object cin which is entered using the keyboard.
Syntax for Standard Input Stream (cin) in C++
cin >> var_name;
>>
is the extraction operator.
var_name
is usually a variable, but can also be an element of containers like arrays, vectors, lists, etc.
The "c" in cin refers to "character" and "in" means "input". Hence cin means "character input".
The cin object is used along with the extraction operator >> in order to receive a stream of characters.
The >> operator can also be used more than once in the same statement to accept multiple inputs.
The cin object can also be used with other member functions such as getline(), read(), etc. Some of the commonly used member functions are:
• cin.get(char &ch): Reads an input character and stores it in ch.
• cin.getline(char *buffer, int length): Reads a stream of characters into the string buffer, It stops when:
it has read length-1 characters or
when it finds an end-of-line character '\n' or the end of the file eof.
• cin.read(char *buffer, int n): Reads n bytes (or until the end of the file) from the stream into the buffer.
• cin.ignore(int n): Ignores the next n characters from the input stream.
• cin.eof(): Returns a non-zero value if the end of file (eof) is reached.
The prototype of cin as defined in the iostream header file is: extern istream cin; The cin object in C++ is an object of class istream. It is associated with the standard C input stream stdin.
The cin object is ensured to be initialized during or before the first time an object of type ios_base::Init is constructed.
After the cin object is constructed, cin.tie() returns &cout. This means that any formatted input operation on cin forces a call to cout.flush() if any characters are pending for output.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* Standard Input Stream (cin) in C++ language */
// cin with Member Functions
#include <iostream>
using namespace std;
int main() {
char name[20], address[20];
cout << "Name: ";
// use cin with getline()
cin.getline(name, 20);
cout << "Address: ";
cin.getline(address, 20);
cout << endl << "You entered " << endl;
cout << "Name = " << name << endl;
cout << "Address = " << address;
return 0;
}
'Virtual Function' is a special form of member function that is 'declared within a base class' and 'redefined' by a derived class. "virtual" is used to create a virtual function, precede the
"Self-Organizing" List updates on the basis of 'last searched item'. The sequential searching approach is used. In general search, 80% time only specific 20% of data is accessed. Sample