C++ Programming Code Examples
C++ > Sorting Searching Code Examples
Find maximum and minimum number in array c++ code
/* Find maximum and minimum number in array c++ code
Write a program to find maximum and minimum number in array using for loop and if statement.
To initialize array use random numbers
Program should display all random elements of array and minimum and maximum number in array on the output console.
Array size is fixed to 100 to change the size just change the value of size integer
In the for loop array is initializing with a random number less than 100 to change the range just replace 100 by any desired number and it will produced numbers between 0 to a number you replaced
In another for loop which programs go through from start of the array to the end and with contains two if statements which checks for both minimum and maximum number in array */
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
int main()
{
const int size=50;
// array with size of 50
int array[size];
// for random numbers
srand(time(0));
for(int i=0;i<size;i++){
// Initializing Array number is less than 100
array[i]=rand()%100;
// Displaying array value
cout<<array[i]<<endl;
}
// initializing max, min
int max=array[0];
int min=array[0];
/* scanning array to find minimum and maximum number */
for(int i=0;i<size;i++){
// finding minimum number in array
if(min>array[i]){
min=array[i];
}
//finding maximum number in array
if(max<array[i]){
max=array[i];
}
}
// displaying output
cout<<"Maximum Number is :"<<max<<endl;
cout<<"Minimum Number is:"<<min<<endl;
return 0;
}
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Get current time. Get the current calendar time as a value of type time_t. The function returns this value, and if the argument is not a null pointer, it also sets this value to the object pointed by timer. The value returned generally represents the number of seconds since 00:00 hours, Jan 1, 1970 UTC (i.e., the current unix timestamp). Although libraries may use a different representation of time: Portable programs should not use the value returned by this function directly, but always rely on calls to other elements of the standard library to translate them to portable types (such as localtime, gmtime or difftime).
A predefined object of the class called iostream class is used to insert the new line characters while flushing the stream is called endl in C++. This endl is similar to \n which performs the functionality of inserting new line characters but it does not flush the stream whereas endl does the job of inserting the new line characters while flushing the stream. Hence the statement cout<<endl; will be equal to the statement cout<< '\n' << flush; meaning the new line character used along with flush explicitly becomes equivalent to the endl statement in C++.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Generate random number. Returns a pseudo-random integral number in the range between 0 and RAND_MAX. This number is generated by an algorithm that returns a sequence of apparently non-related numbers each time it is called. This algorithm uses a seed to generate the series, which should be initialized to some distinctive value using function srand. RAND_MAX is a constant defined in <cstdlib>. The rand() function in C++ is used to generate random numbers; it will generate the same number every time we run the program. In order to seed the rand() function, srand(unsigned int seed) is used. The srand() function sets the initial point for generating the pseudo-random numbers. The rand() function generates numbers randomly.
A relational operator is used to check the relationship between two operands. C++ Relational Operators are used to relate or compare given operands. Relational operations are like checking if two operands are equal or not equal, greater or lesser, etc. Relational Operators are also called Comparison Operators.
In computer programming, we use the if statement to run a block code only when a certain condition is met. An if statement can be followed by an optional else statement, which executes when the boolean expression is false. There are three forms of if...else statements in C++: • if statement, • if...else statement, • if...else if...else statement, The if statement evaluates the condition inside the parentheses ( ). If the condition evaluates to true, the code inside the body of if is executed. If the condition evaluates to false, the code inside the body of if is skipped.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Initialize random number generator. The pseudo-random number generator is initialized using the argument passed as seed. The C++ <cstdlib> srand() function seeds the pseudo-random number generator used by rand() function. If rand() is used before any calls to srand(), rand() behaves as if it was seeded with srand(1). For every different seed value used in a call to srand, the pseudo-random number generator can be expected to generate a different succession of results in the subsequent calls to rand. Two different initializations with the same seed will generate the same succession of results in subsequent calls to rand. If seed is set to 1, the generator is reinitialized to its initial value and produces the same values as before any call to rand or srand.
Program has 'three functions' which receives 2 pointers reference. Three functions returns int, float and double sum of numbers. So this c++ tutorial use the following concepts. Write
The first program uses temporary variable to swap numbers, whereas the second program doesn't use temporary variables. To perform 'swapping' in above example, three variables