C++ Programming Code Examples
C++ > Strings Code Examples
Concatenate C-style Strings
/* Concatenate C-style Strings
In this example, you will learn to concatenate (join) two strings (both string objects and C-style strings). */
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
char string1[50], string2[50], result[100];
cout << "Enter string string1: ";
cin.getline(string1, 50);
cout << "Enter string string2: ";
cin.getline(string2, 50);
strcat(string1, string2);
cout << "string1 = " << string1 << endl;
cout << "string2 = " << string2;
return 0;
}
Strings are objects that represent sequences of characters. The standard string class provides support for such objects with an interface similar to that of a standard container of bytes, but adding features specifically designed to operate with strings of single-byte characters. The string class is an instantiation of the basic_string class template that uses char (i.e., bytes) as its character type, with its default char_traits and allocator types. Note that this class handles bytes independently of the encoding used: If used to handle sequences of multi-byte or variable-length characters (such as UTF-8), all members of this class (such as length or size), as well as its iterators, will still operate in terms of bytes (not actual encoded characters).
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C++ programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C++ array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
The cout is a predefined object of ostream class. It is connected with the standard output device, which is usually a display screen. The cout is used in conjunction with stream insertion operator (<<) to display the output on a console. On most program environments, the standard output by default is the screen, and the C++ stream object defined to access it is cout. The "c" in cout refers to "character" and "out" means "output". Hence cout means "character output". The cout object is used along with the insertion operator << in order to display a stream of characters.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
Get line from stream into string. The cin is an object which is used to take input from the user but does not allow to take the input in multiple lines. To accept the multiple lines, we use the getline() function. It is a pre-defined function defined in a <string.h> header file used to accept a line or a string from the input stream until the delimiting character is encountered. Extracts characters from is and stores them into str until the delimitation character delim is found (or the newline character, '\n', for (2)). The extraction also stops if the end of file is reached in is or if some other error occurs during the input operation. If the delimiter is found, it is extracted and discarded (i.e. it is not stored and the next input operation will begin after it).
A return statement ends the processing of the current function and returns control to the caller of the function. A value-returning function should include a return statement, containing an expression. If an expression is not given on a return statement in a function declared with a non-void return type, the compiler issues an error message. If the data type of the expression is different from the function return type, conversion of the return value takes place as if the value of the expression were assigned to an object with the same function return type.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
Concatenate strings. The strcat() function in C++ appends a copy of a string to the end of another string. It is defined in <cstring> header file. Appends a copy of the source string to the destination string. The terminating null character in destination is overwritten by the first character of source, and a null-character is included at the end of the new string formed by the concatenation of both in destination. destination and source shall not overlap. The strcat() function takes two arguments: destination and source. This function appends a copy of the character string pointed to by source to the end of string pointed to by destination. The null terminating character at the end of destination is replaced by the first character of source and the resulting character is also null terminated.
Use the three variable say a, b and c. Place b in a and c in b then place a+b in c to print the value of c to make and print Fibonacci series as shown here in the following C++ program.