C++ Programming Code Examples
C++ > Visual C++ 5.0 Standard C++ Library Code Examples
The next permutation algorithm changes the order of the elements in the range
The next permutation algorithm changes the order of the elements in the range
The next permutation algorithm changes the order of the elements in the range
next_permutation
Header
<algorithm>
template<class BidirectionalIterator> inline
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last)
The next_permutation algorithm changes the order of the elements in the range [first, last) to the next lexicographic permutation and returns true. If there is no next_permutation, it arranges the sequence to be the first permutation and returns false. IMPORTANT: The next_permutation algorithm assumes the sequence is sorted in ascending order using operator<. The non-predicate version uses the operator< to order the permutations.
template<class BidirectionalIterator, class Compare> inline
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare compare)
The next_permutation algorithm changes the order of the elements in the range [first, last) to the next lexicographic permutation and returns true. If there is no next_permutation, it arranges the sequence to be the first permutation and returns false. NOTE: The next_permutation algorithm assumes that the sequence is sorted in ascending order using the compare function. The non-predicate version uses the compare function to order the permutations.
Samples
Sample for Non-Predicate Version
// disable warning C4786: symbol greater than 255 character,
// okay to ignore
#pragma warning(disable: 4786)
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>
using namespace std ;
void main()
{
const int VECTOR_SIZE = 3 ;
// Define a template class vector of strings
typedef vector<string> StrVector ;
//Define an iterator for template class vector of strings
typedef StrVector::iterator StrVectorIt ;
//Define an ostream iterator for strings
typedef ostream_iterator<string> StrOstreamIt;
StrVector Pattern(VECTOR_SIZE) ;
StrVectorIt start, end, it ;
StrOstreamIt outIt(cout, " ") ;
start = Pattern.begin() ; // location of first
// element of Pattern
end = Pattern.end() ; // one past the location last
// element of Pattern
//Initialize vector Pattern
Pattern[0] = "A" ;
Pattern[1] = "B" ;
Pattern[2] = "C" ;
// print content of Pattern
cout << "Before calling next_permutation...\n" << "Pattern: " ;
for(it = start; it != end; it++)
cout << *it << " " ;
cout << "\n\n" ;
// Generate all possible permutations
cout << "After calling next_permutation...." << endl ;
while ( next_permutation(start, end) )
{
copy(start, end, outIt) ;
cout << endl ;
}
}
Program Output
Before calling next_permutation:
Pattern: A B C
After calling next_permutation:
A C B
B A C
B C A
C A B
C B A
Sample for Predicate Version
// disable warning C4786: symbol greater than 255 character,
// okay to ignore
#pragma warning(disable: 4786)
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>
using namespace std ;
void main()
{
const int VECTOR_SIZE = 3 ;
// Define a template class vector of strings
typedef vector<string> StrVector ;
//Define an iterator for template class vector of strings
typedef StrVector::iterator StrVectorIt ;
//Define an ostream iterator for strings
typedef ostream_iterator<string> StrOstreamIt;
StrVector Pattern(VECTOR_SIZE) ;
StrVectorIt start, end, it ;
StrOstreamIt outIt(cout, " ") ;
start = Pattern.begin() ; // location of first
// element of Pattern
end = Pattern.end() ; // one past the location last
// element of Pattern
//Initialize vector Pattern
Pattern[0] = "K" ;
Pattern[1] = "A" ;
Pattern[2] = "L" ;
//sort the contents of Pattern, required by next_permutation
sort(start, end, less<string>()) ;
// print content of Pattern
cout << "Before calling next_permutation...\n" << "Pattern: " ;
for(it = start; it != end; it++)
cout << *it << " " ;
cout << "\n\n" ;
// Generate all possible permutations
cout << "After calling next_permutation...." << endl ;
while ( next_permutation(start, end, less<string>()) )
{
copy(start, end, outIt) ;
cout << endl ;
}
}
Program Output
Before calling next_permutation:
Pattern: A K L
After calling next_permutation:.
A L K
K A L
K L A
L A K
L K A
In C++, vectors are used to store elements of similar data types. However, unlike arrays, the size of a vector can grow dynamically. That is, we can change the size of the vector during the execution of a program as per our requirements. Vectors are part of the C++ Standard Template Library. To use vectors, we need to include the vector header file in our program. The vector class provides various methods to perform different operations on vectors. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function. It inserts an element into the end of the vector. Access Elements of a Vector: In C++, we use the index number to access the vector elements. Here, we use the at() function to access the element from the specified index.
In while loop, condition is evaluated first and if it returns true then the statements inside while loop execute, this happens repeatedly until the condition returns false. When condition returns false, the control comes out of loop and jumps to the next statement in the program after while loop. The important point to note when using while loop is that we need to use increment or decrement statement inside while loop so that the loop variable gets changed on each iteration, and at some point condition returns false. This way we can end the execution of while loop otherwise the loop would execute indefinitely. A while loop that never stops is said to be the infinite while loop, when we give the condition in such a way so that it never returns false, then the loops becomes infinite and repeats itself indefinitely.
Transform range to next permutation. Rearranges the elements in the range [first,last) into the next lexicographically greater permutation. A permutation is each one of the N! possible arrangements the elements can take (where N is the number of elements in the range). Different permutations can be ordered according to how they compare lexicographicaly to each other; The first such-sorted possible permutation (the one that would compare lexicographically smaller to all other permutations) is the one which has all its elements sorted in ascending order, and the largest has all its elements sorted in descending order. The comparisons of individual elements are performed using either operator< for the first version, or comp for the second.
Iterators are just like pointers used to access the container elements. Iterators are one of the four pillars of the Standard Template Library or STL in C++. An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container. They allow you to iterate over the container, access and assign the values, and run different operators over them, to get the desired result. • Iterators are used to traverse from one element to another element, a process is known as iterating through the container. • The main advantage of an iterator is to provide a common interface for all the containers type. • Iterators make the algorithm independent of the type of the container used.
In computer programming, loops are used to repeat a block of code. For example, when you are displaying number from 1 to 100 you may want set the value of a variable to 1 and display it 100 times, increasing its value by 1 on each loop iteration. When you know exactly how many times you want to loop through a block of code, use the for loop instead of a while loop. A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
Return iterator to beginning. Returns an iterator pointing to the first element in the vector. Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it. If the container is empty, the returned iterator value shall not be dereferenced. The C++ function std::vector::begin() returns a random access iterator pointing to the first element of the vector. This function does not accept any parameter.
Inline function is one of the important feature of C++. So, let's first understand why inline functions are used and what is the purpose of inline function? When the program executes the function call instruction the CPU stores the memory address of the instruction following the function call, copies the arguments of the function on the stack and finally transfers control to the specified function. The CPU then executes the function code, stores the function return value in a predefined memory location/register and returns control to the calling function. This can become overhead if the execution time of function is less than the switching time from the caller function to called function (callee). For functions that are large and/or perform complex tasks, the overhead of the function call is usually insignificant compared to the amount of time the function takes to run. However, for small, commonly-used functions, the time needed to make the function call is often a lot more than the time needed to actually
A program shall contain a global function named main, which is the designated start of the program in hosted environment. main() function is the entry point of any C++ program. It is the point at which execution of program is started. When a C++ program is executed, the execution control goes directly to the main() function. Every C++ program have a main() function.
Access element. Returns a reference to the element at position n in the vector container. A similar member function, vector::at, has the same behavior as this operator function, except that vector::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception. Portable programs should never call this function with an argument n that is out of range, since this causes undefined behavior. Function returns the element at the specified position in the vector.
Return iterator to end. Returns an iterator referring to the past-the-end element in the vector container. The past-the-end element is the theoretical element that would follow the last element in the vector. It does not point to any element, and thus shall not be dereferenced. Because the ranges used by functions of the standard library do not include the element pointed by their closing iterator, this function is often used in combination with vector::begin to specify a range including all the elements in the container. If the container is empty, this function returns the same as vector::begin. This function does not accept any parameter.
Consider a situation, when we have two persons with the same name, jhon, in the same class. Whenever we need to differentiate them definitely we would have to use some additional information along with their name, like either the area, if they live in different area or their mother's or father's name, etc. Same situation can arise in your C++ applications. For example, you might be writing some code that has a function called xyz() and there is another library available which is also having same function xyz(). Now the compiler has no way of knowing which version of xyz() function you are referring to within your code.
A C++ template is a powerful feature added to C++. It allows you to define the generic classes and generic functions and thus provides support for generic programming. Generic programming is a technique where generic types are used as parameters in algorithms so that they can work for a variety of data types. We can define a template for a function. For example, if we have an add() function, we can create versions of the add function for adding the int, float or double type values. Where Ttype: It is a placeholder name for a data type used by the function. It is used within the function definition. It is only a placeholder that the compiler will automatically replace this placeholder with the actual data type. class: A class keyword is used to specify a generic type in a template declaration.
Templates are powerful features of C++ which allows us to write generic programs. Similar to function templates, we can use class templates to create a single class to work with different data types. Class templates come in handy as they can make our code shorter and more manageable. A class template starts with the keyword template followed by template parameter(s) inside <> which is followed by the class declaration. T is the template argument which is a placeholder for the data type used, and class is a keyword. Inside the class body, a member variable var and a member function functionName() are both of type T.
Ostream iterators are output iterators that write sequentially to an output stream (such as cout). They are constructed from a basic_ostream object, to which they become associated, so that whenever an assignment operator (=) is used on the ostream_iterator (dereferenced or not) it inserts a new element into the stream. Optionally, a delimiter can be specified on construction. This delimiter is written to the stream after each element is inserted.
copy() function is used to copy items from one iterator to another iterator with a specific range. We can define the start and end position of the source and it will copy all items in this rage to a different destination. To use copy() function, we need to include <bits/stdc+.h> or header file. It copies all the elements pointed by first and last. first element is included in the output but last is not. output is the start position of the final result iterator. It returns one iterator to the end of the destination range where elements have been copied. Function returns an iterator to the end of the destination range where elements have been copied.
Relational operators for vector. Performs the appropriate comparison operation between the vector containers lhs and rhs. In C++, relational and logical operators compare two or more operands and return either true or false values. The equality comparison (operator==) is performed by first comparing sizes, and if they match, the elements are compared sequentially using operator==, stopping at the first mismatch (as if using algorithm equal). The less-than comparison (operator<) behaves as if using algorithm lexicographical_compare, which compares the elements sequentially using operator< in a reciprocal manner (i.e., checking both a<b and b<a) and stopping at the first occurrence.
Sort elements in range. Sorts the elements in the range [first,last) into ascending order. The elements are compared using operator< for the first version, and comp for the second. Equivalent elements are not guaranteed to keep their original relative order (see stable_sort). C++ Algorithm sort() function is used to sort the elements in the range [first, last) into ascending order. The elements are compared using operator < for the first version, and comp for the second version. std::sort() is a built-in function in C++'s Standard Template Library. The function takes in a beginning iterator, an ending iterator, and (by default) sorts the iterable in ascending order. The function can also be used for custom sorting by passing in a comparator function that returns a boolean.
Function object class for less-than inequality comparison. Binary function object class whose call returns whether the its first argument compares less than the second (as returned by operator <). Generically, function objects are instances of a class with member function operator() defined. This member function allows the object to be used with the same syntax as a function call. This function does not return any value.
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program.
This is a C++ Program to find 'Prime number' between the given range using 'Wheel Seive' method. "Wheel Factorization" is a graphical method for manually performing preliminary
Inserting element into the "deque". Deleting element from the deque. "Insert" element in "doubly ended queue". Enter the value to be inserted. Element inserted into empty deque.
Method that implements the basic primality test. If witness doesn't return 1, n is definitely composite. Do this by computing a^i (mod n) and looking for "non-trivial" square roots of 1